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Dynamic fluctuation phenomena in a solution of wormlike micelles are investigat-
ed. The anomalous fluctuation contribution to viscosity coeflicients 7y is calculated.
This contribution is determined by nonlinear interaction of hydrodynamic modes
with bending mode, describing the relaxation of the shape of micelles. At high
frequencies 1y behaves as w=1/4, In the low-frequency limit ny; does not depend
on frequency and is of the order of (£p/¢)n (¢ is the average distance between
crosslinks of the micelles, £, is the persistent length, n is the viscosity of the pure
solvent). Therefore in the case {5 > £ the value of ny; exceeds the bare viscosity
n.

When amphiphilic molecules -are brought into water they can assemble in
aggregates of various shapes [1]. In the present work we focus on the particular
situation where these aggregates are long cylindrical (wormlike) micelles. Lyotropic
systems (dilute amphiphilic solutions) showing one-dimensional aggregation actually
provide an realization of an interesting physical object — fluctuating lines. In
lyotropic systems long wormlike aggregates can break and recombine reversibly.
The possibility of these processes (look-like as in so called living polymers [2])
differs lyotroplc systems from ordmary polymers, where the molecular chains are
unbreakable.

In the recent article [3] the authors investigated the structure and dynamical
properties of lyotropic systems, comstructed from wormlike aggregates. It turns
out that static structural properties of the systems are look like of polymers. In
particular the scaling laws characteristic of polymers [4] are observed. However
the dynamical properties of wormlike lyotropic systems and polymers are different.
This difference could be associated with the peculiarities of reptation, scission
and recombination processes in lyotropic systems. Just this explanation has been
proposed in [3]. Here we investigate effects related to the fact that in lyotropic
systems wormlike micelles can be considered as roughly straight on distances much
exceeding their thickness d. Dynamical fluctuations of micelles on these scales
prove to provide a relevant contribution to the viscosity of the system.

The system of wormlike micelles ‘can be characterized by the typical length scale
¢, which is the average distance between neighboring crosslinks of micelles. Besides
a micelle like a polymer is characterized by the persistent length &, [4]. We
will suppose that £, > d (such situation in polymerphysics termed ”semiflexible”
polymers). We will consider the case § « &. Then on scales smaller than ¢
we can consider wormlike micelles as independent almost straight cylinders. We
will also believe that the system is dilute which implies that £ > d. The main
fluctuation effects are related to scales from d to ¢ where wormlike micelles can
be considered as ld objects i. e. lines.
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The static properties of the micelles can be formulated in terms of the energy
of these lines. The energy E; related to variations of the shape of a micelle can

be written in the form 1 i
E,1=-2-/dlfc§2— , (H

analogous 1o the well known Hel&ipﬁ energy [5] related to membranes (which are
2d objects). In (1) « is the bending module, dl designates the integration along
the micelle and R is its curvature radius. Note that in (1) there is no term
related to the surface tension since it is equal to zero because of the possibility
of breaking and recombining micelles. The persistent length ¢, determined by (1)
s
K ; : ‘
~ . 2
In addition to the emergy (1) one must also take into account the elastic
energy, related to variations of the linear density of molecules n;, constituting the
micelle. In the approximation we need, such a contribution is
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Here

n —-ng -
= . 4
= 4

where n; —ng is a deviation of the linear density of molecules from its equilibrium
value ng, and the coefficient B has the meaning of the inverse compressibility of
the micelle. :

For coefficients x and B there are the natural estimations

T T
K~ I§d4' B~ ;gdz : ‘ &)

Here T is the temperature, a is the characteristic atomic size (T/a® is the
estimation for the Young module), and d is the thickness of the micelle. Usually
the thickness d exceeds largely the atomic size a and consequently £, ~ di/ad®>d.
The inequality shows that there exists the region of scales £, > r > d where we
may neglect the thickness of the micelle and consider it as approximately straight.

To investigate dynamic fluctuational effects we need nonlinear equations describ-
ing dynamics of a wormlike micelle immersed in a liquid. These equations -can be
formulated using the Poisson brackets method and the dissipative function [6]. We
give here only ultimate expressions which we need, omitting details. The stress
tensor of a micelle per its unit length constructed according to (1), (3) is

fl}(,:") = ——-;—(vamllj)zl/,'l/k + £V ViUV Vi UnVivi |
+avi(8ij — Vitj WnVa(Vm Vmy;) + Bovive . ' (6)

Here v; is the unit vector along the micelle. The equation for the linear density

n is
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which has the meaning of the conservation law of the number of molecules of the
micelle. Besides we can assert that the micelle moves with the velocity v; of the
liquid near the micelle. ‘

To proceed further we have to solve the bulk hydrodynarmc equations and
express bulk velocities in terms of the velocity of the micelle. For a straight
cylinder this problem has been solved by Lamb in 1911 (see e.g. the monograph
[7]). The Lamb’s solution for the velocity has the logarithmic singularity near the
cylinder A

va~mln |r; |+ const . (8)

Here v is the velocity of a liquid near a micelle, m determines the value of
the derivatives of the velocity near the micelle, r ;= (6;; — viv;)rj. This solution
correctly describe the velocity near any micelle on scales smaller than curvature
radius of the micelle R or of the value ¢g~! where ¢ is the wave vector of the
hydrodynamical motion. We consider the case, when the shape of the micelle only
slightly differs from the‘straight line, so the cutoff factor will be ¢~ 1.

Expressions (6), (7), (8) can be employed to study the ecigenmodes of a
wormlike micelle. There are two soft modes where the motion of the solvent is
localized near the micelle. One of these modes (actually it is not ome but two
degenerate modes) is related to the relaxation of the shape of a micelle. This
mode (we will term it as the bending mode) has the dispersion law

4
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It is our assumption here that |In(gd) |>> 1. The other characteristic mode is
related to variations of the density n; of a micelle. The dispersion law for this
mode (which may be termed elastic) in the linear approximation is
i
2B ,

w=——5q . | (11)

Note that these modes are analogous to the soft surfacial modes for membranes’
8.9]

Due to softness of tue bending mode (9) dynamlcal effects related to bending
fluctuations of micelles are relevant. To examine these effects we will utilize a
diagram technique of the type first developed by Wyld [10] for the problem of
hydrodynamical turbulence and extended on a wide class of physical systems by
Martin, Siggia and Rose [11]. A textbook description of the diagram technique can
be found in the book by Ma [12]. Note that this diagram technique is a classical
limit of the Keldysh diagram technique {13} applicable to any physical system.
As it was demonstrated by de Dominicis [14] and Janssen [15] (see also [16] and
[17]) Wyld’s diagrammatic technique is generated by a conventional quantum field
theory fashion starting from an effective action I. The corresponding methods of
investigation can be found. in the monograph by Popov [18] (see also [6]).

In our case the effective action I consists of two parts — the buik one related
to the liquid and the part related to micelles. Bulk degrees of freedom can be
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effectively excluded from the consideration by minimization over these variables of
_the effective action. After the minimization we arrive at the term attached to the
micelle and describing the interaction between the micelle and the liquid. This
proceduresis analogous to one proposed in the work [19] for 2d micelles (see also
[9]). As a result one can find the explicit expression for the effective action I; for
a ld micelle '

L= /dt dl (—Vkp. ) + D(pivi — %V,Vkp,vk)) . (12)

Here p; is the auxiliary field conjugated to the velocity of the liquid. This
expression is valid with the logarithmic accuracy.

We believe that the micelle is approximately straight. In this case it is
naturally to introduce the Z-axis in the direction of the micelle and to describe
its deviations from the straight shape in terms of the displacement vector u,
(where the Greek index runs over = and y). The fact that the micelle moves with
the ‘velocity v; of the liquid near the micelle means that the dynamical equation
for u, is

%t”—‘ima—v,v Yo . ‘ (13)

This equation alongside (7) should be implied at exploiting (12).

The quadratic part of effective action (12) determines the bare correlation
and response functions. The correlation function Dag = (uqug) in the Fourier
representation is -

2T

Dap(w,q)=5apm E (14)
The response function (uapp) = Gap corresponding to Dyg has the form

Gap(w,4) = ~bap(Tw +ing) ™" . (1)
.The higher order terms of I determines fluctuational corrections to the bare values

(14), (15).
An analysis shows that on scales d €« r € § only the higher order. terms
entering the combination

/ dtdzB( s+ V.t ,pa)(a/at) ( Lot 0/8t(V u,,)Z) (16)

are televa.nt. It can be demonstrated that the interaction terms in (16) lead to
the redefinition of the coefficient B

‘ B
in correlation functions. Here the quantity F is
dwydg 4 :
Fw)= " Dap(¥)Gaplu+ 1) (18)

From (14), (15) and (I8) it follows
i1\ ‘
570
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Let us note that the function F(w) is analytical in the upper half-plane. The most

interesting is the region of parameters where BF > 1 (i. e. where fluctuations
strongly renormalize the module B). In this region :
r=i/F . - (20)

Due to softness of the bending mode (9) the interaction of sound {(and other
hydrodynamic modes) with fluctuations of micelles proves to be relevant. The
interaction induces anomalous contributions to such directly observable quantities
as viscosity. Using the same procedure as for membranes [9] we can find the
fluctuational contributions to viscosity coefficients of lyotropic systems with wormlike
micelles. For this purpose we have to average the fluctuational contnbutlon to the
stress tensor over micelles. As a result we find :

M=—13v o PR o (21

where I/V is the average length of micelles per umnit volume (I/V has the
dimension cm~2). We see that the fluctuation viscosity has the nonmtrivial frequency
dependence. If (20) is correct

IK§/4P3/4 ~1/4 ’

M~y - (22)

The region of the applicability of (22) is limited from below. The problem

is that at the derivation of this expression we have believed the micelles to be
approximately straxght and non-interacting. It is true only if-the characteristic
wave vector g is larger than £-!. Using the dispersion law (9) we find the
limiting condition for (22) w > x¢~*/T. For smaller frequencies the fluctuational
contribution to viscosity 7y will not depend on frequency and will be of the order

272;1 ~UYVKE[T . | (23)
In the case & > ¢ the ratio 7nu/n will be of the order of this large factor
and therefore the fluctuation viscosity ny will exceed the viscosity n of the pure
solvent.

Theoretical results of our paper are qualitatively in agreement with expenmental
data [?] for dilute solutions of wormlike micelles. The quantitative comparison with
experiment is now difficult. We think that there are two predictions of the theory
which can be checked experimentally. First from (23) it follows that the low-
frequency value of 7y has to be proportional to V¢, where ¢ is the concentration
of amphiphilic molecules. Second in the high-frequency region w > x{~*/T (and
if the expression (20) holds) the sound absorption should be proportional to w’/*
(instead of the conventional law w?).

Authors thank dr. S. Nechaev for introducing us to the physics of wormlike
micelles and acquainting with the paper [3]. A.M. thanks ISF for partial support.
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