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For a disordered system near the Anderson transition we show that the nearest-
level-spacing distribution has the esymptotics P(s) o exp(—As?~7) for s> (8) = 1
which is universal and intermediate between the Gaussian asymptotics in a metal
and the Poisson in an insulator. (Here the critical exponent 0<v< ! and the
numerical coefficient A depend only on the dimensionality d > 2). It is. obtained
by mapping the energy level distribution to the Gibbs distribution for a classical
one-dimensional gas with a pairwise interaction. The interaction, consistent with
the universal asymptotics of the two-level correlation function found previously, is
proved to be the power-law repulsion with the exponent —.

It is well known [l, 2, 3] that a statistical description of energy levels of
quantum disordered systems in the metallic phase is provided by the random matrix
theory (RMT)[4]. Its most important characteristic is the repulsion between the
energy levels at any scale. In the Anderson insulator phase, the energy levels are
indeperdent and described by the Poisson statistics, provided that the appropriate
states are separated by the length exceeding the localization length.

It has been conjectured [5, 6] that a universal statistical description is possible
also in the critical region in the vicinity of the Anderson transition between the
" two phases. The dimensional scaling estimation made in Ref.[5] for the variance
(N2)—(N)? of the number of energy levels in a given energy interval, has suggested
that it is proporticnal to (N), thus being different from the Poisson statistics only
by a certain number. A different statistical characteristic, the nearest-level-spacing
distribution, has been conjectured in Ref.[6] on the basis of numerical simulations
to be some universal ‘hybrid’ of the Poisson distribution for large level spacings
and the Wigner surmise (see below) for small spacing.

However, it has recently been analytically proved [7] that the universal statistics,
exactly applicable near the Anderson transition point (mobility edge), is entirely
new and drastically different from both the RMT and the Poisson limit. The
variance of the number of levels in the energy interval E > A (centered at the
Fermi energy) has been found as

-y =% (5) =0y, 0<r<L 0
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Here A is the mean level spacing, () denotes the ensemble averaging, the
coefficient ag and the critical exponent 7y depend only on the dimensionality
d> 2, and B is determined by the class of symmetry (=1,2, or 4 for unitary,
orthogonal, and symplectic ensembles, respectively [4]) - Eq. (1) is. exact at the
mobility edge in the limit

-

L =00, (N)=const > 1. , (2)

In the same limit, the metallic phase is exactly described by the RMT ‘and the
insulator phase by the Poisson statistics.

Thus, the spectral rigidity does not dlsa.ppear at the mobility edge (in con-
trast to the insulating phase where the levels are independent and the variance
equals (N})), but it is considerably weaker than in the metallic phase (where the
fluctuations are suppressed and the variance is proportional to In(N)). Then it is
naturally to expect that the nearest-level-spacing distribution near the Anderson
transition is also different from those both in the metal and insulating phases.

Indeed, we will show in this Letter that the asymptotics of this distribution at
the mobility edge is given by

- P(s) < exp(—A4Bs*7Y), s=w/A> ], (3)

where w is a distance between adjacent levels, and A4 is some fumerical factor
depending only on the dimensionality d. This is ! drastically different from both
the Poisson distribution, P(s) = exp(—s), and the exact Gaussian asymptotics in
the metallic phase [4]

P(s) ~ exp (-—%‘n’zﬁsz) ‘ (4)

Note that the famous Wigner surmise P(s) = (7s/2)exp(—ws?/4) (for g = 1)
describes this asymptotics only approximately [4]. ‘

Both the universal variance (1), and the asymptotics of the distribution (3)
result from the exact asymptotlcs of the spectral demsity correlation function at
the mobility edge

R(w) = ;%(u(e)u(e')) e o=, sze/A,  |o—z|> 1 ()
(1]

where v(c) is the exact density of states at the energy ¢, 1o is the mean density
of states, cq is a positive number depending only on the dimensionality d > 2.
The asymptotics (5) has been obtained in Ref.[7] by calculating all the diagrams
(with accuracy up to a numerical coefficient) which turned out to be possible
after taking into account the analytical properties of the diffusion propagator and
certain scaling relations at the mobility edge.

To derive the announced result (3), we will use the effective “plasma model” as
suggested by Dyson [8]. In such a model, the level distribution is mapped to the
Gibbs distribution of a classical one-dimensional gas of fictitious “particles” with
a repulsive pairwise interaction f(|e; —e,]) in the presence of a confining potential

V(e)
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P({en}) = 27  exp[-BH({en})], (6)
H{{en}) =D flles ~&50) + ZV(€= (7)

i<j

Here Z is the partition functxon and (B plays a role of the inverse temperature.
For f(le; —¢;]) =Inle; — 517", Eqs. (6), (7) reproduce exactly the level distribution
in the RMT, with 8 dependmg on the symmetry class as described after Eq. (1).
The choice V(e.-) =¢? for the confinement potential leads to the Gaussian ensembles
but other choices are also possible [4, 9]. In the metallic phase such a description
is exact for the energy separation |¢; —¢j| < E. =h/rp where 7p = L2/D is the
‘ergodic’ time necessary for an electron to diffuse across the system. For t < 7p,
i.e. |e; —¢j| > E., the level statistics is completely different [3] from that of the
RMT. However, it is also described with the Gibbs distribution (6), (7), albeit
with the pairwise interaction f having the power-law asymptotics [10].

At the mobility edge E. ~ A (g = E, /A is a dimensionless conductance)
Therefore, the energy separation of a few A is already outside of the RMT region
of validity. We will show that the asymptotics of the correlation function (5) at
the mobility edge is described correctly by the Gibbs model with the power-law
- interaction

1 -
f(]:v—:c'l) = 2

(Naturally, this interaction is different from that in Ref.[10], where v > 1, which
describes the monuniversal level statistics in the metallic phase at the scale w > E..)
Before proving this, we will show how the form of the pairwise interaction governs
the asymptotics of P(s). '

The distribution P(s) describes the probability to find the nearest adjacent
level at the distance s =w/A from a given one. It is equivalent to the probability
to find a “gap” of the width s (i.e. region that contains no “particles”) in the
" Gibbs model. This probability is obtained [4] from Eq. (6) as

7 cot(my/2) |z —2'|77, O<4«y <l ~z= e/A. (8)
d

P(s) = exp [-B(F, — Fo)] (9)

where F, is the free energy of the one-dimensional gas (7) distributed along the
straight line with the gap s around its center. For s 3> 1, one introduces a
continuous density p,(z) to describe such a distribution. Then, in the mean-field
approximation (MFA) F, may be expressed as the functional

0 (z)ps (=) f(lz—2"]) + /I. I>f$ ps(2)V (2), (10)

where p,(z) obeys the mean-field (MF) equation
[ de'n@e=a) = Vi) =y el 2 /2 (11)
l='12 ¢
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Here j, arises from: the “particles” number conservation (corresponding to the level
number conservation in the original quantum disordered system),

dz p,(:c)dz=/_°° po(z) =WN. (12)

=12 §

Taking s=0 in Eqs. (10) and (11), one finds the density po(z) and free energy
Fy for a homogeneous distribution. -

Equations similar to (10) and (11) have been derived for a circular ensemble .
(a classical gas with the log|z — z’|™! interaction confined to a circular wire)
by Dyson [8] (see also Ref.[4]) who' has also found the corrections to {he MF
solution (allowing for the entropy term added to the functional (10) and for the
discreteness of the original distribution) lead to a linear in s contribution to the
difference F, — Fy. For s> 1 this contribution is small compared to the leading
quadratic term, Eq. (4). We will consider only the terms leading in the s> 1
limit which are described by the MFA.

For the circular ensemble [8] there was no need in the conﬁmng potential
V(z). We use the linear ensemble that is more conmvenient for relating the
interaction f(le; —¢;|) to the correlation function (5). Equation (11) with the
weakly singular kernel (8) can be solved for any V{(z). This exact solution shows
a strong dependence of both p, and py (and thus F, and Fo) on V(z) (see Eq.
(17) for pp). However, it is easy to show that the difference F, — Fo, and thus
the distribution (9), does not depend on V for s > 1 in the limit A& — oo.
Furthermote, the asymptotics of this universal distribution may be found, with
accuracy up to a numerical coefficient, without knowing the explicit solutlon to
Eq. (11).

The explicit dependence of F, — Fy on V(z), Eq. (10), is excluded straightfor-
wardly with the help of Egs. (11), (12). Then, after some transformations using
the fact that the change in the “chemical potential” due to the gap formation

— po~ s/N <1, one finds with the accuracy up to s/A that

_p=-L /W /| de’ 6p,6p(z')f(|o~2' )+

>4
+§ _'/2(13./ dz’po(t)po(zl)f(,lz-zll) . (13)

where 8p(z) = p,(z) — po(a:) decreases rapidly for z» s. The function §p(z) obeys

the MF equation:
/

s/2 B
[ aesa)fte=2= [ as'm@) fe=2), ez (14

=12 % -s/2 ,
which follows from Eq. (11), if one neglects the small term u, — po ~ s/N. The
homogeneous level demsity po(z) in' Eqs. (13), (14) still depends on V(z), Eq.
(11). However, for |z| < s/2 € N, this dependence is negligible, and in the limit
N — oo one finds pp=1 (in units of 1/A). Now it is clearly seen from Eqs. (13)
and (14) that the quantity F,— Fo=—8"'ln P(s) is determined by the interaction
f(lz=z']) only.
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Equations (13) and (14) are valid for an arbitrary long-ranged interaction
F(lz—z']). For the case of the power-law interaction (8) (with 0 <+ < 1), one may
rescale z — sz and z’ — sz’ to find that the solution of Eq. (14) (with po =const)
has the form 8p(z) = ¢(z/s), where p(z) is a universal function independent of s.
Substituting - this solution to Eq. (13) we arrive after the same rescaling at:

F,— Fo==f"'InP(s)= A, s*" ' (15)
where the universal constant A, depends only on the power of the interaction.
Calculating this constant for the limiting case (y=0) of the logarithmic interaction
in Egs. (13), (14) one reproduces the asymptotics (4) known from the RMT 4]
which leads to the announced result Eq. (3). ) :

To prove that the interaction (8) reproduces the correlation function (5), we
use the relationship [9]: '

$po(2) ‘
X . 16

8V (z') (16)
For the interaction f=a,|z—2'|"7 and an arbitrary v(z) = V(z)+ o, the solution
to Eq. (11) with s =0 is found, using the methods described in Ref.[ll], as
follows: :

R(z,z')=—-B"

_ cos?(ry/2)(z + D)5

e B(v, 557) x

po(z)

D t
Xd%{/, dt(t+ D)7t —2)'F %/_DdT(T-FD)L;_(t—T)%' "(T‘)}" (17)

Here B is the Euler function, D is the band edge that may be found from Eq.
(12) and tends to infinity when A — oco. Taking the variational derivative (16),
‘. substituting —B~16(7 —z') for v(r) in Eq. (17), one finds in the limit D — oo:

R(z,z') = ——‘ﬂ"l

1- s '
27raj cot (—2‘!) e —2'|72 (18)
So the Gibbs model with the power-law interaction results in the asymptotics (5)
of the correlation function. Comparing Egs. (5) and (18), we obtain Eq. (8).

Note that for all the three universal statistics, in the metal and insulating
phases and at the mobility edge, a simple relation holds between the variance
of the level number fluctuations in the limit (2), and the asymptotics of the
nearest-level-spacing distribution. Namely, if the variance proportional to (N ¥,
then —InP(s) . 3?~7. The linear in (N) variance is forbidden at the mobility
edge [7] by the exact sum rule that is due to the conservation of the total
number of states A'. Therefore, the Poisson (i.e. linear in s) asymptotics of P(s)
is equally forbidden at the mobility edge. Finally, following Ref. [6], we note that
for s € 1 the distribution P(s) shows at the mobility edge the same behaviour
as in the metallic phase, P(s) ~ s?, which follows from the general symmetry
theorem proved by Dyson [8]. Then, the whole distribution could be described by
the following surmise:

P(s)= Bsﬁ exp (—A4Bs*™7) ' (19)

where B is found from the normalization conditions.
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