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New quantum representations of the odd (with respect to the Grassmann
grading) Poisson bracket are obtained, some of them, as demonstrated by the
simplest example, are responsible for the quantization of the classical Hamilton’s
dynamics based on the odd Poisson bracket.

1. A few years ago the prescription [1] for the canonical quantization of the
odd Poisson bracket (the last has naturally appeared in the Batalin- Vilkovisky
scheme [2] for the quantization of the gauge theories) was suggested, and several
odd-bracket quantum representations for the canonical variables were also obtained.
In contrast with the even Poisson bracket case, some of the odd-bracket quantum
representations turned out to be no equivalent [3]. Later, it has been revealed
that odd Poisson bracket is responsible for the description of the dynamics of
some Hamilton systems [4]. Namely, for the systems having an equal number of
pairs of even and odd (relative to the Grassmann grading) phase coordinates it
was proved that Hamilton’s equations of motion obtained by means of the even
Poisson bracket with the help of the even Hamiltonian can be reproduced by the
odd bracket using the equivalent odd Hamiltonian. However, the direct connection
of the odd-bracket quantum representations for the canonical variables with the
quantization of the classical Hamilton dynamics based on the odd Poisson bracket
has not been formulated explicitly until now. To this end, having two equivalent
ways of the classical dynamics description for the above-mentioned systems [4], one
can try to find such odd-bracket quantum representations, which with the use of
the classically equivalent odd Hamiltonian will provide the quantum description of
the systems, coinciding with that obtained from the corresponding even Hamiltonian
with the use of the even-bracket quantum representations. In other words, the
equivalence of the description of dynamics with the brackets of different Grassmann
parities can be extended from a classical level to the quantum one.

In the present letter, new odd-bracket quantum representations, extending those
obtained in [l, 3], are introduced. At the end of the paper, the simplest example
of the supersymmetric one-dimensional oscillator demonstrates that among these
representations are just the ones relevant to the quantization of the classical
Hamilton systems, whose dynamics is formulated by means of the odd bracket
with the help of the odd Hamiltonian.

2. First, we recall the necessary properties of various graded Poisson brackets.
The even and odd brackets in terms of the real even y; = (g% ps) and odd 7t =0
canonical variables have, respectively, the form
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where g(A4) is the Grassmann grading of the quantity A4, 5 and 5 are the right
and left derivatives, and the notation 8, = 'aé:' is introduced. By introducing apart
from the Grassmann grading g(A) of any quantity A its corresponding bracket
grading g.(4)=g(A4) + € (mod 2) (¢=0,1), the grading and symmetry properties,
the Jacobi identities and the Leibnitz rule are uniformly expressed for the both
brackets (1,2) as

9¢({A,B}e) = ge(4) + 9.(B) (mod 2) , 3)
{A,B}.= _(_1)9.(A)g.(B) {B,A}. , (4
> (-1)# 499 {4, {B,C}}e =0, (%)

(ABC)

{A,BC}.={4, B}e C+(=1)»Ws(®) B{4 C}. , (6)

where (3)-(5) have the shape of the Lie superalgebra relations in their canonical
form [5] with g.(A) being the canonical grading for the corresponding bracket.

3. The procedure of the odd-bracket canonical quantization given in [I, 3]
resides in splitting all the canonical variables into two sets, in the division of
all the functions dependent on the canonical variables into classes, and in the
introduction of the quantum multiplication *, which is either the common product
or the bracket composition, in dependence on what the classes the co-factors belong
to. Under this, one of the classes has to contain the normalized wave functions,
and the result of the multiplication * for any quantity on the wave function ¥
must belong to the class containing ¥. This procedure is the generalization on
the odd bracket case of the canonical quantization rules for the usual Poisson
bracket {...,...}Pois., Which, for example, in the coordinate representation for the
canonical variables ¢ and p is defined as

g *¥(g)=q¥(q), P *‘I’(fz)=ih{zv,‘I’(q)}po.~..=—i>‘:59(,’—:§i :

where ¥(g) is the normalized wave function depending on the coordinate g.

In [1, 3] two nonequivalent odd-bracket quantum representations for the canon-
ical variables were obtained by using two different ways of the function division.
But these ways do not exhaust all the possibilities. In the present paper a more
general way of the division is proposed, which contains as the limiting cases the
ones given in [1, 3].

Let us build quantum representations for an arbitrary graded bracket under its
canonical quantization. To this end, all canonical variables are split into two equal
in the number sets, so that none of them should contain the pairs of canonical
conjugates. Note that to make such a splitting possible for the even bracket (1),
the transition has to be done from the real canonical self-conjugate odd variables
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to some pairs of odd variables, which simultaneously are complex and canonical
conjugate to each other. Composing from the integer degrees of the variables from
the one set (we call it the first set) the monomials of the odd 2s + 1 and even
2s uniformity degrees and multiplying them by the arbitrary functions dependent
on the variables from the other (second) set, we thus divide all the functions
of the canonical variables into the classes designated as (3, and é,, respectively.
For instance, in the general case the odd- bracket canonical variables can be split,
so that the first set would contain the even 3 (i=1,...,n < N) and odd 7"t
(a=1,...,N —n) variables, while the second set would mvolve the rest variables.
Then the classes of the functions obtained under this splitting have the form

1 . ) 1 :
0= (v ™) (' ynia) 5 Eo= (5™ £ (71 Vnta)

where the factors before the arbitrary function f (niyyn.f.a) denote the monomials
having the uniformity degrees indicated in the exponents. These classes satisfy the
corresponding bracket relations

€ € € € € € € € €
{Ou Oa'}s =Os+s’ > {Ou Ea’}e =Ea+a’ 3 {E.ﬂ Es’}e =Os+a’—1 ) (7)
and the relations of the ordinary Grassmann multiplication

Os * O:’=Ea+a’+l ’ O, - Eo’=oa+a' N Ea ° Es’=Ea+s’ . (8)
It follows from (7),(8), that o= {5,} and E= {E,} form a superalgebra with
respect to the addition and the quantum multiplication % (e=0,1) defined for the
corresponding bracket as

' et el e el et el el e’ el el elt ¢

0+ 0={0,0}€0; O + E={0,E}€c E; E » E=E -E€ E,
)
el el el el

where 0,0 € O and E,E € E Note, that the classes 00 and E'o form the
sub-superalgebra. In terms of the quantum grading g.(A) of any quantity A

ge(4) = ge(A), for A€ (3;
g{A), for A€ E,

introduced for the appropriate bracket, the grading and symmetry properties of
the quantum multiplication * , arising from the corresponding properties for the
bracket (3,4) and Grassmann composition of any two quantities A and B, are
uniformly written as

ge(A * B)=gq.(A) + q(B)(mod2) (10a)
¢! el of ot el el
O % 0= —(—1)9:®@)s:00 ) 5 x 0, (100)
e’ el ol «tl el e!
E * E =(_1)9-(E Jo.(E ) p x E , (10¢)

With the use of the quantum multiplication * and the quantum grading ¢. ,
let us define for any two quantities A, B the quantum bracket ((anti)commutator)
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[4, B} (under its action on the wave function ¥ that is considered to belong to
the class E [1, 3]) in the form

[4,B}c x ¥=A * (B % ¥)—(=1)#@A9B)B 5 (4 x ¥) . (11)

If ABe E‘, then, due to (10c), the quantum bracket between them equals zero.
In particular, the wave functions are (anti)commutative. If A or both of the

quantities A and B belong to the class 5, then in the first case, due to the
Leibnitz rule (6), and in the second one, because of the Jacobi identities (3), the
relation follows from the definitions (10) and (11)

[4,B}e », ¥={A,B}c x ¥=(A % B) » ¥,

that establishes the connection between the classical and quantum brackets of the
corresponding Grassmann parity. Note, that the quantization procedure also admits
the reduction to O, U E,.

The grading ¢ determines the symmetry properties of the quantum bracket

(11). Under above-mentioned splitting of the odd-bracket canonical variables
1, 1
into two sets, the grading ¢ equals unity for the variables y; € O, n* € E

1
(¢=1,...,n < N) and equal to zero for the rest canonical variables y.ia € E,

gnte e 6 (a=1,...,N —n). Therefore, in this case the quantum odd bracket
is represented with the anticommutators between the quantities ¥,n' and with
the commutators for the remaining relations of the canonical variables. If the
roles of the first and the second sets of the canonical variables change, then the
quantum bracket is represented with the anticommutators between Ynta, M1 and
with the commutators in the other relations. In [l, 3]) the odd-bracket quantum
representations were obtained for the cases n =0, N, containing, respectively, only
commutators or anticommutators.

4. As the simplest example of using of the odd-bracket quantum representations
under the quantization of the classical systems based on the odd bracket, let us
consider the one-dimensional supersymmetric oscillator, whose phase superspace z4
contains a pair of even ¢,p and a pair of odd n1,n? real canonical coordinates.
In terms of more suitable complex coordinates z = (p —ig)/v2, n= (0! —in)/v2
and their complex conjugates Z,7, the even bracket is written as

{A, B}o =iA ['3—;'5; - 5;5: - (51731; - 51,517)] B (12)
and the even Hamiltonian H, the supercharges Q,;, Q: and the fermionic charge
F have the forms

H=zzi4+17n; Qi=zn+zi; Q:=i(Zn—2z0); F=nq. (13)
The odd Hamiltonian H and the appropriate odd bracket, which reproduce the

same Hamilton equations of motion, as those resulting from (12) with the even
Hamiltonian H (13), i.e., which satisfy the condition [4, 6]

dat
dt
(t is the time) can be taken as H=@Q; and

{z4, H}o={z*, H}; (14)
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{A, B}l =44 (55‘—3'1) - ‘a_f’-gi + 51’,3: - 5:517) B . (15)

The complex variables have the advéntage over the real ones, because with their
use the splitting of the canonical variables into two sets Z,7 and z,7 satisfies
simultaneously the requirements necessary for the quantization both of the brackets

(12,15). Besides, any of the vector fields )e( 4;= —i{A;,...}¢ for the quantities
{4} = (H,Q1,Q2, F), describing the dynamics and the symmetry of the system
under consideration, is spli* into the sum of two differential operators dependent
on either Z,7 or z,n . For instance, from (12)-(15) we have

0 1 R
Xu=X =20, + 70, — 28; — 719y . (16)

The diagonalization does vot take place in terms of the variables =4 = (g, p;n*, n%).
In accordance with the above-mentioned splitting of the complex variables, we
can perform one of the two possible divisions all of the functions into the classes,
which are common for both of the brackets (12),(15), playing a crucial role
under their canonical quantization and leading to the same quantum dynamics for
the system under consideration.. If Z,# are attributed to the first set, then the
corresponding function division is ‘

0.~ (z0)**'f(z,n) 5  E.~(z)*f(zn) .
If we restrict ourselves to the classes O, and E,, then ¥ € E, and depends
only on z,n7 and A; € O,. According to the definition (9), the results of the

quantum multiplications * and * of z,n€ E, and Z,7€ O, on the wave
function ¥ are

=3

z*l\Il=z *O\Iléz - v, *x\Il=2 *O\Il=3,\Il;

(17)
n* ¥=nx ¥=q9 ¥ ; zZx ¥=—7 % ¥ =0,¥ .

The positive definite scalar product of the wave functions ¥i(z,7) and ¥3(z,7n)
can be determined in the form [7]

(\I’I,\I’z)=;1r-/exp[—(lz 12 +8n)] ¥i(z,n) [¥2(z,0)]*dddnd(Rez)d(Imz) , (18)

where 6 is the auxiliary complex Grassmann quantity anticommuting with 7, and
the integration over the real and imaginary components of z is performed in the
limits (—o00,00). It is easy to sce that with respect to the scalar product (18) the
pairs of the canonical variables, being Hermitian conjugated to each other under
the multiplication x, are 2,7 and Z,7, but under * are z,Z and 7, —7.

In order to have the action of the Hamiltonian operator, obtained from the
system quantization, on the wave function, we need, as it is well known, to replace
the canonical variables in the classical Hamiltonian by the respective operators or,
which is the same, to define their action with the help of the corresponding
quantum multiplication *. In this connection, in view of (16),(17), we see that
the self-consistent quantum Hamilton operators in the even and odd cases, being
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in agreement with the classical exi)ressions (13) for the equivalent Hamiltonians H
and H and giving the same result at the action on ¥(z,7) , will be respectively
Hax Y=z % (2% ¥) — 0 (7+ 9); (19)

[\]

Ho+ U=z (1% %) + nx (2x ¥). (20)

1

The Hamiltonians (19),(20) are Hermitian relative to the scalar product (18) and
both, due to (17), are reduced to the Hamilton operator for the one-dimensional
supersymmetric oscillator H = ata + btb expressed in terms of the creation and
annihilation operators for the bosons at =2, a=09, and fermions b+ =17, b=9,
respectively, in the Fock-Bargmann representation (see, for example [8]). The
normalized with respect to (18) eigenfunctions ¥y ,.(z,7) of the Hamiltonians
(19),(20), corresponding to energy eigenvalues Ex,=k+n (k=0,1;n=0,1,...,00)
have the form

\Ilk’,.(z,n)=%(r; *, )k (z )"1.

Note, that another equivalent representation of the quantum supersymmetric os-
cillator can be obtained, if the canonical variables z,7 are chosen as the first
set.

5. Thus, we have demonstrated that the use of the quantum representations
found for the odd bracket leads to the self-consistent quantization of the classical
damilton systems based ‘on this bracket. We should apparently expect that these
representations are also applicable for the quantization of more complicated classical
systems with the odd bracket.
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