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We discuss the nonlinear dynamics of interface between two iayers of organic
semiconductors in the case “of Fermi resonance, which occurs when the energy hw®
of excitation or. one side of the interface is approximately equal to 2fiw®, where huw®
is the excitation energy on the other side. We demonstrate that Fermi resonance
interaction across the interface gives rise to nonlinear plane waves propagatipg along
the interface and also to localized at interface 2D solitons.

1. It is well known that the epitaxial growth of inorganic semiconductors is
limited to materials with small lattice mismatch. The organic materials, on the
contrary, are bound by weak van der Waals forces what allows the layering of
materials with different lattice constants. Therefore great efforts have been made
recently with the aim to create strongly ordered crystalline organic thin films and
multilayer structures [1-5]. The theoretical analysis of linear and nonlinear optical
properties of multilayer organic structures became also topical and some problems
in this field have been discussed in recent papers [6-14].

One of the mechanisms of a "hand-made” optical nonlinearity of multilayer
organic structures pointed out recently [8,9] is based on the Fermi resonance
between excitations of neighbouring layers: In Refs [9, 10, 12] such interface
Fermi resonance was discussed for the case when the energy of two excitons 2hw®
in one layer is close to some exciton energy Fw® in the neighbouring layer. In these
papers the new states - quantum and classical Fermi Resonance Interface Modes
(FRIM) were found which appeared due to an intermolecular anharmonic' interaction
across the interface. This phenomenon extends the usual Fermi resonance in the
bulk molecular crystals and can be important, as it was shown in [8-14], in
the investigations of linear as well as nonlinear optical properties of multilayer
structures. :

In the limit of strong pumping, i.e. at large occupation numbers of excitations,
it is natural to use a classical approximation suggested for FRIM model in Refs.
[8,10]. It has been shown in [10] that the anharmonic interaction under considera-
tion can lead to bistability in the energy transmission through the interface. Using
the simplest 1D model, it was demonstrated that there is the close connection
between bistability and classical FRIM.

Now we extend this model to 3D case with 2D interface and consider the
energy propagation along the interface.

2. We assume that the bilayered structure consists of two molecular crystals
separated by perfect plane interface. The molecules of ¢ type occupy the sites
of simple cubic lattice on the right from the interface (ng,ny,n.; n.=0,1,2,..))
and the molecules of b type occupy the sites of the lattice on the left from the
interface (n;,ny,n;; nz=-1,-2,...). To demonstrate the appearence of the Fermi
resonance interface solitons we consider here ‘the simplest case of Fermi resonance
between ¢ and b harmonic vibrations, assuming that Aiw® = 2hw®. For this case
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the main anharmonic interaction between ¢ and b molecules corresponds to the
cubic anharmonicity and has the form

Hine =Tlcon,m, (b1, n,) + R,

where b1(b) and c'(c) are the creation (annihilation) operators for b and ¢
excitations.

In the classical approximation we replace all operators by their mean values
(bnunyn.) = Bnon,n, and (cn,n,n.) =Caon,n,, Where B and C are classical ampli-
tudes of vibrations. These variables in our model satisfy the following equations:

iaBn,n,n,/at - bin,,n,,n, - Vb(Bn.,-—l,n,,,n, + Bn,,-}-l,n,,,n, + Bﬂ,,ny-—l,n, +
+Bﬂn7ﬂy+11nz + B"uy"yvnx'—l + Bncy"yy"s+1) = 0 (1)

for molecules in the bulk-of the b-crystal,

i0B_1n,m, /0t —w'B_1 4, 0, — V' (B2, + Boin,~1,n, +
+B" Liny+ln, + B—lv"vv”z"l + B‘—lv"‘w"‘s+1) - 2FB:1,"y1”; COnyn, = 0 (2)
for b-molecules near to the interface (n, =-1),
iaCO,n,,,n,/at - wcCO,ny,n, - Vc(Cl,n,,n, + CO,n,—l,n, + Co,ﬂy+1,n, +
+Cov7‘y1"‘z—1 + Covnyynx+1) - I‘Bil,ny,ﬂ, = 0 (3)
for c-molecules near to the interface (n,=0), and '
iaCn.n,n,/at - wch,,n,n, - Vc(Cn,—l,n,,u, + Cn,+1,ny,n, + Cn,,n,—l,n, +
+Cﬂmny+1,ﬂ; + Cn,,n,,n,—l + Cn,,,ny,n‘+1) =0 (4)

for molecules in the bulk of the c-crystal.
We shall look for the localized near the interface solution in the form of plane

wave ) )
- —3t Kpng  2(kyny,+k.n
By, ayn, = Be” 3™ sg3(kynytks ‘), (5)

Cn,nyn, = Ce—iute—-ncn,ei(kyny+k,n,).
with x3 >0 and k. > 0. From the equations (1) and (4) we get
w® — w/2 + 2V®(cosh &y + cos(ky/2) + cos(k./2)) =0, (6)

w® —w + 2V°(cosh k. + cos ky + cosk,) =0.

These equations give us the values of x; and «. as functions of w and (ky,k,).
Egs. (2) and (3) give the relations between variables B and C which can be
written with the help of (6) in the form

2IB*C=V'Be™,  TB?=V°Ce* . (7)
These relations yield immediatelly
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I=|Bf = S-emts, (8)
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As follows from (8), the quantities x; and k. are real in case of real V? V¢ and
I', and they increase with increase of intensity I. The quantities V%e** and V¢e®<
can be found easily form (6) what leads to the dispersion relation in an implicit
form

8’y = {Z—) —-wb - 2Vb(cos(ky/2) + cos(k;/2)) + [(% —wb - 2Vb(cos(ky/2) +

+cos(k;/2)))? — 4V*)?)H M w — w° — 2VS(cos ky + cos k,) + [(w — w® —
—2V*¢(cos ky + cos lc,))2 - 4(V°)2]1/2}. 9

If V® and V° vanish, we return to the two-molecule model discussed in Ref. [10].
Signs before roots correspond to positive values of (w/2 — w® — 2V®{cos(k,/2)+
+cos(k./2)) and (w —w® —2V*(cos ky + cosk,)), otherwise they should be reversed.
Such a choice leads to correct limit as V® V¢ — 0.

3. In a long wave limit |k}, |k, < 1 eq. (9) leads to the quadratical
dependence of w on wave numbers k, and k.. If we consider nonlinear nonuniform
wave propagating along the interface in z-direction, then the variables B and C
will depend on t and z and their equations of motion will have in a long wave
Limit the form

8B _,. -,0°B o
iy 9 B-V e ~2I'B*C =0, (10)
30 ~c ~c320 2

’LE'-‘U c-V _67_1‘3 —0.

where &, &°, V? V¢ are some constants determined by the dispersion relation in
the limit of small |k,| and at k, = 0. These equations may be considered as
equations describing two-plane model with renormalized parameters.

We would like to demonstrate that the system under consideration has solitonic
excitations. To this end, we consider the simplest case when the solution of egs.
(10) has the form

B = F exp[(—it + ikz)/2], C =pBF exp(—iQt + ikz), F =F(z— vt), (1)
where (3 is constant. Substitution of these expressions into (10) yields
(/2 — &b + V k2 /4)F —i(v + VPk)F' — VP F" - 2TF?3 =0, (12)
(Q —&° + VEE)F —i(v + 2Vk)F' — V°F" —-TF?/3=0.
There are two possibilities for vanishing the imaginary parts of these equations:
(i) k=0, v=0, (13)
(i) T=20°, v=—V%=—_20°%.
At first we consider the case (i). Equations (12) for F are compatible if

2 -
Ty (19

%

what determines 8 and

14 2abVe — oV?)
=tyfe, Q= et
. 2Ve Ve -2V

(15)
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In what follows we shall choose positive sign for 8. Then F satisfies the equation

~b _ m~ec
F"—;_‘:’_:T“’ﬁparr,/vacpuo (16)

Its integration gives (with the integration constants such that F' — 0, F — 0 as
z —» 00)

a
F= cosh?(kz)’ (17,
where

(18)

VT 2t — e 1(2&6_56)1”
a= . = K= = _— .
22T Ve -2v¥’ 2 \ Ve - 2vh

Thus, we have found for real x the soliton solution for the interface wave

we—ift/? c afe—ift
cosh?(kz)’ ~ cosh?(kz)’

(19)

where all the parameters are defined above. This solution corresponds to the
soliton at rest. Apparently, it is a very special case of more general solitonic
solution.

The case (i7) in (13) leads to a particular solution for moving soliton. Now
we have -
g==xl, Q= g(ZOc — &b~ VTkZ. (20)

Integration of equation for F leads to the moving soliton solution

_ aexp(—iQt/2 — ivz/2V?) C= aexp(—iQt — ivz/V?)

B (21)

cosh?{k(z — vt)] ! cosh?[k(z — vt)] '
where ) . -
- (mc _n=b - w0~ 1/2
@ 2T (w 2% )) w=| 6V | (22)

As v goes to zero we return to the solution (19) for the soliton at rest with
Vb =2V¢. One may expect that there are solitonic excitations for more arbitrary
choice of parameters describing the system. This possibility will be discussed
elsewhere.

Thus, we have found that there are Fermi Resonance Interface Modes propa-
gating along the interface between two crystals provided their vibromic excitations
satisfy Fermi resonance condition. In the limit of strong excitations these modes
can be described by classical theory and for some parameters or frequencies they
can exist as the localized soliton states. Such propagating modes can play an
important role in the energy transmission along the interfaces.
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