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As is demonstrated in [2, 3] in the limit of the infinitly large Reynolds
number the correlation functions of the velocity predicted by Kolmogorov's 1941
theory (K41) are actually solutions of diagrammatic equations. Here we demonstrate
that correlation functions of the velocity derivatives V,vg should possess scaling
exponents which has no relation to K41 dimensional estimates, this phenomenon
will be refered to as anomalous scaling. This result is proved on the diagrammatic
language: we have extracted series of logarithmically diverging diagrams summation
of which leads to renormalization of normal K41 dimensions. For a description of
the scaling of various functions of V4vg an infinite set of primary fields O, with
independent scaling exponents A, can be introduced. Symmetry reasons cnable
us to predict relations between scaling of different correlation functions. Besides
we formulate restrictions imposed on the structure of correlation functions due
to the incompressibility condition. We also propose some tests enabling ones to
check experimentally the conformal symmetry of the turbulent correlation functions.
Further we demonstrate that the anomalous scaling behavior should reveal in the
asymptotic behavior of correlations function of velocity differences and propose a
way to obtain the anomalous exponents from the experiment.

The theory of turbulence is the theory of strongly fluctuating hydrodynamic
motion. Systems with strong fluctuations are examined both in quantum field
theory and in condensed matter physics, e.g., in treating second order phase
transitions. It is known that adequate tools of theoretical investigation of strong
fluctuating systems are based upon functional integration methods, on different
versions of the diigrammatic technique and on related methods. Therefore a
consistent theory of turbulence should also be constructed in these terms.

The diagram technique for the problem of turbulence was developed by Wyld
(1], who started from the Navier-Stokes equation with a pumping force. The
Wyld technique enables one to represent any correlation function characterizing the
turbulent flow as a series over the nonlinear interaction. Unfortunately infrared
divergences appear in the technique. To avoid the divergences we will make use of
the quasi-Lagrangian (qL) variables. The perturbation theory of the Wyld type in
qL variables was developed by Belinicher and L’vov [2] (see also the review [3]).

The Wyld diagrammatic expansion is formulated in terms of propagators G and
F and vertices determined by the nonlinear term of the Navier-Stokes equation.
The G-function is the linear susceptibility determining the average value (v,) of
the velocity v which arises as a response to the nonzero average ( fa):

Gap(t,r1,12) = —i8(va(t, r1))/6{fp(0,r2)), (1)
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where f is the pumping force. The F-function is the pair correlation function of
v: v

Fap(t,r1,12) = (va(0,r1)vp(t, r2)) - (2)

Note that the propagators G and F in qL variables depend separately on co-
ordinates of the points r;, r;. Besides the simultaneous correlation function
F(t = 0,ry,r;) coinciding with the simultaneous correlation function of Eulerian
velocities depends only on the difference r; — rs.

To establish the behavior of (1), (2) we can utilize the dimensional estimations
by Kolmogorov and Obukhov [4, 5]. For the pair correlation function (2) we
obtain

F(t,ry,r3) ~ (ER)*/?, (3)

where R is the characteristic scale and £ is the average value of the energy
dissipation rate per unit mass

e=(¥/2)(Vavp + Vpva)® . (4)
The Green’s function also possess the scaling behavior with
G(t,r1,r2) ~ R3. (5)

The question arises: can such scaling behavior be obtained as a solution of
diagrammatic equations? ‘

To answer this question one should first reformulate the diagram technique
in terms of the bare vertices but of the dressed propagators F and G. Then
one can easily check that the scaling behavior of F and G determined by the
estimates (3), (5) is reproduced in any order of the perturbation theory. But this
is not sufficient to justify the assertion that F and G actually possess such scaling
behavior. The reason for this was long ago recognized in the theory of second
order phase transitions. Reformulating the diagrammatic series for the correlation
functions of the order parameter in terms of the bare interaction vertex but with
the dressed correlation function with its suitable scaling exponent, one can check
that this exponent is reproduced in each order of the perturbation theory. Besides
one immediately encounters logarithmic ultraviolet divergences which arise in each
order of the perturbation expansion. The logarithmic corrections are summed up
to generate power corrections strongly renormalizing the naive exponents.

Fortunately this phenomenon does not occur in the theory of turbulence. As
was demonstrated by Belinicher and L’vov [2] in qL variables there are neither
infrared nor ultraviolet divergences in the diagrammatic expansion for G and F,
if (3), (5) are assumed. The analogous theorem can be proven for high order
correlation functions of u. This property is the ground for the assertion that
in the consistent theory the simultaneous correlation functions actually have naive
K41 exponents. (see also [6]). Nevertheless ultraviolet logarithms immediately arise
in the diagrams for correlation functions of powers of the velocity gradient V,uvg.
The simplest example of such a correlation function is the following irreducible
correlation function

K.c(R) = ((e(t, r)e(t,r + R))) . (6)

Let us analyze the diagrammatic series for K,.(r1,rz). The first one-loop
diagram for K..(r;,r;) gives the expression possessing normal K41 behavior
« R™8/3, The diagrams of the next order are depicted in Fig.], where circles
designate the points r; and rz, a vertex is determined by the nonlinear term in the
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Navier-Stokes equation, a wavy line corresponds to the pair correlation function (3)
and a combined wavy-straight line designates the Green’s function (1). Using the
estimates (3,5) we find that these diagrams give us the expressions for K., which
ate o« R~%/3, However there are also logarithmic divergences in these diagrams
related to the loops marked by the letter “r”. Therefore the final answer behaves
as R™%/3In(R/n). Generalizing the above analysis we conclude that diagrams of
the n-th order will produce the normal K41 factor R~%/3 with prefactors which
are different powers of the logarithm up to the n-th power. Thus we encounter
a series over the large logarithm In(R/n), which could be an arbitrary function.
Below we will argue that this function is an exponential one, that is a power of
R/n. Such a function in the prefactor produces an anomalous scaling.

ANl

Fig.l. The first diagrams for K., producing ultraviolet logarithms

In the framework of the Wyld technique a formally exact diagram representation
for K., can be formulated originating from the fact that in each diagram for
K., there exists only one cut going along all F-functions [3]. This enables us to
formulate the representation depicted in Fig.2. There we have classified diagrams
for K., in accordance with the number of F-functions in our marked cut, the
ovals designate objects which are sums of the blocks at the left and at the right
sides of the marked cut.

M+M+H+m

Fig.2. The formally exact diagrammatic representation for K,., the first terms of an infinite series

The first “one-bridge” term of the diagrammatic series depicted in Fig. 2 is
actually reduced to the objects arising in the second “two-bridge” term. Therefore
we begin our analysis with this three-leg object Y corresponding to an oval in
this “two-bridge” term. Designating by boxes the sums of the four-leg parts of the
diagrams which cannot be cut along two lines, we come after summation to the
diagrammatic relation presented in Fig.d, where the last term designates the bare
contribution. The diagrammatic relation can be rewritten in analytical form, this
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gives the integral equation for Y. The kernel B of this equation corresponds to the
sum of boxes in Fig.2 with attached lines. Following the analysis given in [2, 3]
one can demonstrate that there are neither ultraviolet nor infrared divergences in
the higher order diagrams for B. This means that first contributions give the
correct scaling for B. Utilizing (3,5) we conclude that the integration in the
equation is dimensionless. It follows that this equation admits scaling solutions for
Y. Actually an infinite number of terms with different exponents present in T
since the equation for T is an integral one. Analogously the higher-order terms of
the series depicted in Fig.3 can be analized. Thus we conclude that K,.. possess
a complicated scaling behavior. The same is true for all correlation functions of
of local fields ¢;(r) constructed as different single-point products of the velocity
gradients, since the gradients will produce logarithms and consequently anomalous
dimensions.

=

Fig.3. The diagrammatic equation for the three-leg object T entering the diagrammatic expression
for K.

bl

PR

To proceed in the analysis of the scaling it is worthwhile to extract a set
of local fields A, with “clean” scaling behavior, namely each local field A, is
characterized by its scaling dimension A, what means that

(4n(R)Am(0)) oc R™4~= 8. (7)

Among the set A, one can extract the subset of the so-called primary fields O,
which give rise to all other fields A, by differentiation. These “field-descendants”
A, are usually referred as secondary fields. The dimension A of any secondary
field A differs from the dimension A, of the corresponding primary field O, by an
integer number I: A=A, +l, the number | being the number of the differentiations
needed to obtain A from O,. An example of a primary turbulent field is the
velocity v itself possessing the normal K41 scaling dimension A, =-1/3.

Any local field ¢; can be expanded in a series over the fields A, with some

coeflicients: ,
2i(r) = j(n)An(r). (8)

This expansion enables ones to reduce the correlation functions of ¢; to the
correlation functions of the fields A,. Unfortunately it is impossible to find the
values of A, but one can express the scaling behavior of observable quantities in
terms of A,. It is convenient to order the fields A, over the values of their scaling
dimensions: A; < Az < Aj.... It is clear that the principal scaling behavior of
correlation functions of ¢; is determined by the first nonzero term of its expansion
into a series over A,. For instance if the first terms of the expansions of ¢;
and ¢; are not equal to zero the scaling behavior of the principal term in the
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correlation function ((p1(R)pz(0))) is o R™281. We expect that this behavior
is inherent to a correlation function of two scalar fields. Since (6) is just such
function we conclude that 2A; = u, where by definition K,. o R™*.

Now we can formulate for hydrodynamic turbulence fusion rules for fluctuating
fields as introduced by Polyakov [7]. It is obvious that the product of the fields
An(r1)Am(rz) taken at the nearby points behaves like a single-point object, which
can be expanded into a series over A,(r). Thus we come to the relations

An(r1)Am(r2) = Y Crna(r1 — x2)Ai((xs +12)/2), (9)
1 :

which are known as the operator algebra (8, 9]. The relations (8), (9) can be
used in investigating any correlation function of the fields ¢; with two nearby
points.

Special consideration is needed for the correlation functions of the first power of
the velocity v and of its derivatives because of the incompressibility condition. For
instance, the cross-correlation function of the velocity itself with any scalar field ®;
is equal to zero. To prove this, note that the correlation function (v(r)y;(0)) is a
vector which can only be directed along r. However we know that the divergence
of this vector should be equal to zero because of incompressibility V.v=0.

Note that if the system possesses conformal symmetry then there exists a set
of strong selection rules for the coefficients in the r.h.s. of (7), established by
Polyakov [10]. Namely these coefficients are not equal to zero for different values
A, and A, only if these fields are secondary fields of the same primary field.
This is the consequence of the “orthogonality rule”: the correlation functions of
different primary fields O, are equal to zero if the system possesses conformal
symmetry. This question arises in connection with the recent work of Polyakov
(11] who treated 2d turbulence in the framework of the conformal approach (as
is known [12] for 2d systems conformal symmetry permits one to establish many
properties of the correlation functions, particularly possible sets of dimensions A,,
the conformal symmetry imposes also some restrictions on the r-dependence of
correlation functions in 3d [13]).

Using (8), (9) one can examine the asymptotic behavior of correlation functions
of the velocity differences. Consider the case when there are two sets of mearby
points rj, r; and r3, ry separated by the large distance R. Take as an example
the second power of the velocity difference (vi — v2)?. Using (9) we can “fuse”
this object into a single point. It is natural to expect that the principal term in
this expansion is determined by Oj:

(v1 = v2)? = f(r12)01((r1 +12)/2), (10)
where r12 =|r; — rz|. It means that

(((vi = v2)*(va — v4)?)) o f(r12)f(r3a) R-241, (11)

remind that 2A; = u. The r-dependence of the function f(r) can also be established
if one remembers that the general scaling behavior of the correlation function of
velocity differences in the Lh.s. of (11) is determined by the conventional K4l
index —4/3. Comparing this index with the scaling behavior (11) we conclude
that f(r) oc r21%2/3. Then we should take into consideration the terms of the
expansion of (v — vz)z over vector and tensor fields. These terms describe the

550



dependence of (((vi—v2)?(v3—vs)?)) on the angles between R and r;—rj, r3—ry.
The main such term will be determined by the smallest value A,; of principal
scaling exponents of tensor fields.

The proposed scheme can casily be generalized for all even powers (v; — v;)?".
The main contributions to the correlation function ({(vi— v2)™(v3 —v4)™)) are as
follows: The first contribution o« R=?4! will not depend on the angles, the second
contribution oc R=41=241 js the sum of two terms depending on the angle between
R and r; —r; or on the angle between R and r3 —r; only and the third term
o R728:1 depends on both angles. This is also the point where the conformal
symmetry would reveal, since it kills the second contribution o« R~2:1—8,

Let us now analyze the correlation functions of odd powers. First we consider
the special case of the first power since the difference v; —v; possesses the normal
K41 dimension. The main term of the expansion of this difference in the series
over local fields is V,vs. This means, e.g., that ((via — v24)(vag — v4p)) x R™4/3.
Consider now the correlation function ((via — v2a)(vs — v4)?"). As we have seen
the correlation function (vO,) is zero for any scalar field O,. Therefore only the
vector and tensor fields A, should be taken into account in the expansion for
(va — v4)?™ what gives

((via — v2a)(Vs — v4)®") o R™3/3-8a (12)

where A as above is the smallest exponent of tensor fields. Of course among
the fields A, in the expansion (8) for (v3 — v4)®" there is a term with V,vp.
This means that in any case there is the term o R~%/3 in the correlation function
((via = v2a)(vs — v4)?"). This is again the point where conformal symmetry could
be checked: it admits only the behavior o« R=%/3,

Now consider a general odd power of the velocity difference (vig—v2q)(V1i—v2)2".
It can be expanded into a series over the same fields A, as the even powers but
with more complicated angular dependence of coefficients. Therefore the scaling
behavior of the mutual correlation functions of the odd-odd and of the odd-even
correlation functions at large separations will be the same as the behavior of
the even-even correlation function. Terms with different scaling exponents can in
principle be separated on the basis of their angular dependence.

The conclusions made in this article concern principal scaling behavior of
correlation functions of velocity gradients and velocity differences. Therefore we
hope that our predictions permit direct experimental checking.
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