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Magnetic field dependence of negative magnetoresistance (MR) in variable-
range-hopping conduction is discussed. Above four dimensions, the negative MR
saturates at large magnetic fields. In dimensions lower than four, the negative
MR corresponds to a field-dependent correction to localization length. A qualitative
coarse-graining picture is presented for such behaviors.

It is well known that the low field magnetoresistance (MR) on the dielectric
side of a metal-insulator tranmsition in the variable-range-hopping (VRH) regime can
be negative (see Ref. [1] for a review).

In three dimensions, the weak localization theory, [2] which works well in
metals, predicts that the n:agnetic field induces a correction to the conductivity

(80) = (o(H)) — (0(0)) = 3z;- Here Ly is the magnetic length, and brackets
<> correspond to averaging over random realizations of scattering potential. The
expression for this correction does not contain length scales other than Ly itself.
It is connected with the fact that main contribution comes from self-crossing
diffusion paths with a characteristic size of loops of order L.

In Ref. [3], it was assumed that this correction dominates the magnetoresistance
in all metallic region including the vicinity of a metal-insulator transition. This
leads to o(H) ~ m‘% - A%, where A is a coefficient about which nothing
is known. This equation is equivalent to a change of correlation radius 6¢ =

E(H) - €(0) ~ ——%. This behavior was interpreted in Ref. [3] as a shift of
mobility edge due to magnetic fields.

In the spirit of scaling theory of metal-insulator tramsition, the behavior of
the localization radius below the transition and the correlation radius above the
transition should be the same and it is natural to expect that on the dielectric
side of the transition, the magnetic field correction to the correlation radius has
the same form on both sides of the tramsition. On the other hand, on the
dielectric side of the transition weak localization theory does not work because at
Ly > &, the contribution to the conductivity from self-crossing paths of size Ly
is exponentially small and can be neglected.

A qualitative picture and a simple model for MR in the VRH regime, based
on the interference of directed tunneling paths, was proposed in Refs. [4] and
[1]. The numerical simulations of MR for relatively small hopping lengths in the
framework of this model yielded a MR of order of unity. [4,1] Further numerical
works in Ref. [5] and Ref. [6] for samples much larger than those in Ref. [4,1]
have led to the conclusion that in two dimensions the negative MR corresponds
to corrections to localization radius. '
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Fig.l. The region of coherent tunneling. T is a typical directed path, Sp is the
area covered by the path

Fig.2. In two dimensions, magnetoconductance L; defined by Eq.(4) versus mean
hopping distance r

In this paper we show, that in the framework of the model based in the inter-
ference of directed paths the MR is universal and only depends on dimensionality.
A coarse-grained picture of negative MR is introduced, in which the tunneling
area is divided into blocks of the size of the magnetic length, and the global
MR is attributed entirely to magnetic field reduction of the variance of tunneling
transmission probability of each block. Each plaquette in the coarse-grained lattice
represents a block of the size of the magnetic length in the original model. The
solution of the coarse-graining model shows that for dimensions d < 4 the MR
corresponds to a correction to localization length of the same form as H-dependent
corrections to correlation radius in metallic regime. This means that the results
of the model [4] are also universal in a sence that they do not contain other
parameters, but Ly itsef and depend only on dimensionality of space. In the
cases d > 4, MR saturates at large H.

We start with a brief discussion of the model. In VRH conduction, electrons
hopping between localized states are associated with absorption or emission of
phonons. At low temperatures, the typical electron hopping distance r is much
larger than the localization length and the average distance between impurity atoms.
As a result, in the course of hopping between localized states, a hopping electron
undergoes multiple elastic scatterings with impurities. The lattice model proposed
in Ref. [4] (see Fig. 1) takes into account the interference of different tunneling
paths between initial and final sites “” and “j”. Tunneling paths containing
returns and loops are neglected because of their exponentially small contribution
to the total probability of a hop. A typical path is shown in Fig. 1 for a two
dimensional lattice. Generalization to higher dimensions is straightforward. Let T
denote a direct path in the figure. The tunneling amplitude associated with T is
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given by
Ar = exp (i27¢r /o) H ak, - (1)

kel

where a;’s are independent random variables associated with each site, representing
the random scattering amplitudes of impurities encountered by the electron in the
course of tunneling. The index k in Eq. (1) runs over sites belonging to the
path T, ¢r is the magnetic flux through the shaded area enclosed by I' and the
diagonal, and ¢o = hc/e is the flux quantum. The hopping probability is

oii(H) = AP =) Arl*. 2
r

Eq. (1) and Eq. (2) can be derived directly from the Anderson model, using the
locator expansmns [1]. By percolation theory, the macroscopic conductance can be
obtained by performing a logarithmic average of Eq. (2) over impurity ensembles
[1,7). We define the magnetoconductance (MC) as,
L= <ln ""‘(H)> : 3)
a5(0)

The directed path model can also be used to describe the insulating regime near
metal-insulator transition, where the localization length £ is much larger than the
length of individual impurity state wave functions. The idea is to divide the region
of tunneling into “blobs” of size ¢ and assume that it is possible for tunnmeling
paths to take backward steps within a given blob but not between blobs [1].
this analog, each site in Fig. 1 should then be understood as a blob. Results we
shall present are valid when the magnetic length is larger than the localization
length. In Ref. [8], this picture was also extended to superconductor-insulator
transitions.

It was shown in Ref. [1] that if the random variable a; in Eq. (1) has a large
enough probability to take negative values, the total tunneling amplitude A =3 Ar
will have a random sign at H =0 for large enough tunneling distances. We can
introduce a sign persistence length r, beyond which the tunneling amplitude A
becomes random ins sign. Then one can coarse-grain the lattice so that each site of
the new lattice represents a block of size r,. This corresponds to a renormalized
ap with random signs (i.e., (ax) =0) in the new coarse-grained lattice. In the
following, our discussion will be focused on such coarse-grained lattices.

The qualitative picture of negative MR proposed in Ref. [1] is the following. If
ai’s are of random signs, then (|A4|2)={(| Y Ar|?) does not depend on H while all
higher moments decrease with H because the variance of a sum of real numbers
with random sign is larger than the variance of a sum of the corresponding complex
numbers which are generated from the random real numbers by multiplying random
phases. As a result, the magnetoconductance defined in Eq. (3) is an increasing
function of H. It is of order of unity when the magnetic phases in Eq. 1 for
typical Ar’s become of order w. It was proposed in Ref. [l1] that this happens
when H > H. = ¢o/(r3€)!/?, here (r3¢)}/? is the area covered by typical directed
paths.

In the following, we shall show that at larger fields the MR at d < 4 is large
and corresponds to a correction to localization radius.
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Consider a two dimensional lattice, let us first divide the sample of size r into
subsquares of size Ly. This guarantees that the phase of the tunneling amplitude
Ar for a typical path T' through each subsquare is of order w. It is also evident
that the width of distribution function of the transmission probability through
subsquares is reduced by a factor of order one compared to the corresponding zero
field value, while the average of the transmission probability remains the same.
For the reason we have discussed, this leads to an increase of the logarithmic
average of the transmission probability for each subsquare. However, whether or
not this leads to an increase of the everall (In|A|%) is not clear. We check this
by a coarse-graining model described below.

According to the arguement above, after dividing a sample into blocks of size
Ly, the only effect of magnetic fields is to reduce the variance of the transmission
probability of each block. If we coarse-grain the lattice such that each block is
reduced to an elementary plaquette as in Fig. 1, an interesting question arises: if
we forget about the magnetic field and only consider a change of Var{|ax|?} while
keeping (ax) =0 and (Jax|?) the same, how will the change of (In|A|?) depend
on r? In other words, we can mimic the effect of applying a magnetic field by
a change in the variance of |ax|? . In the following, we will consider a quantity
analogous to L in Eq. (3) for a bond model,

> (4)

A{e(M}
A{a(z)}

L1 = <ln
where {ag)}, {af)} have different distribution functions satisfying the constraints
stated above.

For d=1, the answer is obvious: L; =fr, where § depends on the difference

§ =Var{]a”*} = Var{Ja"’} .

Above four dimensions, L; does not depend on r asymptotically. This can be
proved exactly because the distribution function of A can be calculated from its
moments. In calculating moments (A™) = (3 v pw ArArArw...), because of the
sign randomness of ai, only even moments survive the average and paths in the
summation should be “paired”, i.e., any site on the lattice should be visited by
an even number of paths. The crucial point is that above four dimensions any
two typical paired paths do not, statistically speaking, intersect. In another word,
paired paths propagate independently. In the absence of magnetic fields, a simple
combinatorial counting gives (4%™) = (2m — 1)!!(z(a®))"™, where z is the number
of neighbors in the forward direction, n is the number of steps on the lattice from
site i to j, which is proportional to hopping length. This leads to a Gaussian
distribution of A with a zero average and a variance equal to (z{a?))". Under
the conditions imposed on calculating L,, it should vanish. Correspondingly, in
the framework of the model of Ref. [4], there is no corrections to the localization
length due to magnetic fields and MC saturates to a number of order unity above
four dimensions.

This behavior is different from d=1, and d=2,3 (discussed below) where MC
increases linearly with the hopping length which corresponds to a correction to
localization length. The relation between the saturation of MR and the assumption
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about the independence of tunneling paths has been discussed in Ref. [9] in two
dimensions where the approximation is not valid. Only above four dimensions,
where two diffusive lines do not intersect, the independent paths approximation is

valid.

L]
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Fig.3. In three dimensions, magnetoconductance L;
1 ! ] } 1 1 | - defined by Eq.(4) versus mean hopping distance »
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Figs. 2 and Fig. 3 shows the results of numerical simulations of L; for d=2,3.
We chose that 6§ =~ 2. Results in these figures clearly show that L; o r, which,
according to our coarse-graining model, means that the MR scales with the number
of blocks of size Ly over the length r,

L=<1ni'ﬁ@>~ . (5)

0i;0) /  La’
This corresponds to a field correction to the localization radius
8¢ =¢(H) - £(0) ~ €/ L. (©)

Here we deliberately use the same symbol for localization length on dielectric side
of the transition as we have used for correlation radius on the metallic side.

Thus we arrive at the following conclusion: within the framework of the model
Eq. (3), there are magnetic field corrections to localization length in all dimensions
less than four. This originates from the fact that in considering MR, one can
divide a sample into blocks of size Ly such that a magnetic field will reduce the
variance of transmission probability of each block by a factor of order ome. The
field effect on each block will be magnified into a correction to localization length
(Eq. (5) and Eq. (6)) in dimensions lower than four. It is in agreement with the
concept of a shift of mobility edge by magnetic fields.

Completely different situation arises in the presence of spin-orbit scatterings. In
this case, the magnetic field correction to the localization radius originates from
the model of Ref. [4] is positive and analytic in H when Ly > {. On the metallic
side of the transition, however, the correction to the correlation radius has the
same non-analytical form as before but with opposite sign, i.e., 6§ ~ §o/Ly.

Many experimental groups have measured magnetoresistance in hopping conduc-
tivity for almost twenty years. Not all of them (especially in three dimensional
samples) observed negative magnetoresistance. The reason of this is not clear at
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the moment. One of the explanation is that the existence of paramagnetic spins
suppresses the orbital interference effect (see corresponding discussions in Ref. [1,6]
Following to this point of view, experiments showing negative magnetoresistance
may correspond to the absence of unpaired spin. In most experiments where
negative magnetoresistance in VRH was observed it was less or of the order of
unity. [10] These experiments correspond to relatively small hopping lengths, where
calculations performed in Ref. [1] are relevant. However, there are more recent
experiments showing that the measured magnetoresistance can be much larger than
unity [11,12]. In these cases, the model we presented is more suitable to explain
the experimental data.
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