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We consider the time-dependent behavior of sidebranching deformations taking
into account the actual nonaxisymmetric shape of the needle crystal. It is found
that the amplitude of the deformation grows faster than for the axisymmetric
paraboloid shape of the needle. We argue that this effect can resolve the puszle
that experimentally observed sidebranches have much larger amplitudes than can be
explained by thermal noise in the framework of the axisymmetric approach. The
coarsening behavior of sidebranches in the nonlinear regime is shortly discussed.

We study the problem of a free dendrite growing in one-component undercooled
melt [1]. The control parameter is the dimensionless undercooling A = (T —
Tw)cp/L, where Ty is the melting temperature, L the latent heat and c, the
specific heat. The temperature field satisfies the diffusion equation with the
interface moving with normal velocity v, and acting as a source of magnitude
vaL/cp. Together with the Gibbs—Thomson condition at the interface, it leads to
a rather complicated integral-differential evolution equation.

The steady-state version of this problem has been discussed in Refs.[2, 3].
The dendritic tip with the radius of curvature p moves at a constant velocity
v. The Peclet number P = pv/2D (D is the thermal diffusivity) is related
to the undercooling A by the 3D Ivantsov formula [4] which reads for small
A: P(A) = —-A/InA . The stability parameter o = do/(Pp) = o*(x), where
do = ¥Tacp/L? is the capillary length proportional to the isotropic part of the
surface energy 7y and o is the strength of the crystalline anisotropy. The function

o*(a) is given by the 3D selection theory [2] and o*(a) o a™/* for small a.
These two relations for P and o determine both v and p. The interface shape
in the tip region is close to the Ivantsov paraboloid and can be described by
equation z(r,¢)=—r%/2+4 3 A,r™ cos(m¢), with the amplitudes A,, given by the
3D selection theory [2] (we measure the all lengths in units of p and time in
units of p/v). In the tail region the interface shape deviates from the Ivantsov
paraboloid: four well-developed arms (for cubic symmetry) are formed in the cross
‘section. For small A, not too far from the tip, this shape can be described as [3]

1
W(z,2) = (Sla/3*(5 )“5< e [ g M)

where the tip position of the arm z,(z) = (5|z|/3)%/%(03/0*)!/5. The function
o}(a) is given by the 2D selection theory and the ratio o3(a)/0*(a) is independent
of o in the limit of small a.

The description of the sidebranches necessitates the solution of a time depen-
dent problem for the perturbation about this missile-shaped steady-state crystal
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z={,(z,y). Langer and coworkers [5, 6, 7] suggested that dendritic sidebranches
might be generated by selective amplification of very small, noisy perturbation near
the tip of a growing needle crystal. It appeared that realistic sidebranching behav-
ior might be produced by purely thermal fluctuations in the solidifying material.
The sidebranching deformation is described in [7] as a small (linear) perturbation
moving on a cylindrically symmetric needle crystal (Ivantsov paraboloid [4]). The
noise-induced wave packets generated in the tip region grow in amplitude, spread
and stretch as they move down the sides of the dendrite producing a train of
sidebranches. In the linear approximation, the amplitude grows exponentially and
the exponent is proportional to |z|{}/4. These results are in approximate, qualita-
tive agreement with available experimental observations (8, 9], but experimentally
observed sidebranches have much larger amplitudes than explicable by thermal
noise in the framework of the axisymmetric approach [7]. It means that either
the thermal fluctuation strength turns out not to be quite adequate to produce
visible sidebranching deformations, or agreement with experiment would require at
least one more order of magnitude in the exponential amplification factor.

The main aim of this paper is to describe the sidebranching problem taking
into account the actual nonaxisymmetric shape of the needle crystal, defined by
eq.(1). We will show that, for this nonaxisymmetric shape, the perturbations grow
faster than for the axisymmetric one. This effect allows to remove the mentioned
discrepancy between the theory and experiment.

As in the Ref.[7], we assume the perturbation to be small and consider its
evolution in the linear approximation. Therefore, the first step in this analysis
is to linearize the evolution equation about the steady-state solution. For the
investigation of the behavior of a noise-induced wave packet as it moves along
the dendrite it is important to know the Green’s function of our linear problem.
According to Ref.[10], the Green’s function is given by a path integral

G(X,Y,t, X'\ Y' t') =
t X Y
=/exp I:/‘, Qz,y, k,,ky)dr—i/XI k. dz —i/Y’ kydy] D{z(r)} D{y(7)} x
x D{kz()} D{ky(7)}. (2

Here the functional integration is performed over all the trajectories z(7), (1),
kz(7), ky(r) which start at the point z=X',y=Y' at 7=t and come to the
point z=X,y=Y at =t

The expression for the Green’s function is of the Feynman type, but with the

action
Y

t X
S=/ Q(z, vy, kz, ky)dr — i k,da:—i/ kydy (3)
‘I XI !
written in the Hamiltonian rather than in the Lagrangian form. In this repre-
sentation all important information about the problem is contained in the local
dispersion’ relation Q(z,y, k¢, ky) of the linear operator. In the WKB approximation
the functional integral can be calculated by the steepest descent method, where
the Green’s function behavior is determined by the extremal trajectory governed

by the Hamilton equations
dz _ .80 dy _ .90 dk, _ .00 dk, _ .00

& T e @ T ek @ T 'wm @ ey W
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Thus, the Green’s function is just G ~ exp(Se;¢) and the problem is reduced to the
solution of the Hamilton equations for the given Hamilton’s function Q(z,y, ks, ky).

The important point is that the local dispersion relation for this solidification
problem is just the well-known local Mullins—Sekerka spectrum. Let us replace the
interface of the needle crystal in the vicinity of its arbitrary point z,y,2={(,(z,v)
by a piece of its tangential plane. For the short-wavelength perturbation of the
form én ~ exp(Qt — ik,s — tk,u), the local Mullins—Sekerka spectrum is

Q= JETF R [cos© — o(k? + k2)] + ik, sin®©. ()

Here © is the angle between the z-axis and the local normal ; %, and k, are
components of a wavevector along § and ; 5 and @ are the unit orthogonal
vectors in the tangential plane; the unit vector § lies in the tangential plane and
in the normal plane (n,z).

The spectrum (5§) is presented in the local orthogonal frame of reference n,s,u.
It is convenient to rewrite it in the fixed Cartesian coordinates and to obtain the
spectrum in the form Q(z,y, ks, ky).

The main restriction of our calculation comes from the fact that any further
analytical progress can be reached only for small values of y, i.e. close to the tip
of the main arm in the cross section. In this region the unperturbed interface of
the needle crystal which is given by eq.(1) can be written as

5 3/s yg y
(EIZI) bt W"z , W«l. (6)

Here we omitted the factor [o3(a)/o*(a)]/® in (1) which is very close to I.
The actual values of ky(7) ~ y(7) are also small in the region of small y. For
small y and k,, we can expand the function Q to the second-order terms:

1 1
Qz,y, ks, ky) =Qo(z, kz) + 3 Ay? + Byk, + 3 Ck; . (M

Here o, A, B and C are the functions of z and k, only. Straightforward but
tedious calculations give for > 1 (or |z > 1) the following equations

o [ ]
4 = ”:f [1 + 3‘;’“ + ;—] (8b)
g ]

L]

where p, = (8¢o/8%)y=0, b=(8%¢,/0y?)y=0. These equations are derived for an
arbitrary profile with extremum at y =0 and they are valid for |p, | > 1. For
our profile (eq. (6)): po=—2z%/3, b=—_2z1/3,

We would like to find the optimal trajectory, that is four unknown functions
z(1), y(7), kz(7), ky(7r), which are governed by egs.(4), (7), (8) and by four
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boundary conditions: z(0) =X'=0, y(0)=Y'=0, z(t)=X, y(t)=Y. In order to
do this we use the following iterative strategy:

i) The first step is to solve these equations for the case y(7) =0 and ky(7)=0.
This gives the trajectory z(r), k;(7) along the ridge of the side arm.

il) The second step is to find y(r), ky(7) for the fixed functions z(r) and
kz(7) given by the first step.

ili) Finally, we find the corrections to z(r), kz(7) due to the functions y(7),
ky(7) given by the second step.

After a lengthy calculation which will be published elsewhere [11] we find the
action for the optimal trajectory

_25/3)°0 e f 3 (3)“’5 (t—12)) 3 (3)“’5 (t— | Z |)?

4/5 o 7/5 _
SO ) e - 5 @Y o

where o =~ 0.039.

After the calculation of the action S at the optimal trajectory, we can write
the Green’s function as G ~ exp(S), where a prefactor comes from the functional
integration over the space close to the optimal trajectory. The noise-induced
correction £;(Z,Y,t) to the interface shape (the profile is described by the relation
X =Xo(Z,Y) +¢£1(Z,Y,t)) is given by the general relation

t
&L(Z,Y,t) = /dZ'dY'/ a&'G(2,Y,t,2',Y't') n(2' Y1), (10)
—o0 /
where 7 is a stochastic field of noise at the interface. Formally, n is the
inhomogeneous term in the linear equation L§; = 7, where L is a linear operator
which has the local spectrum (5) and the Green’s function G.

The appropriate procedure for introducing thermal noise is described in detail
by Langer [7]. Following this procedure, we find the root-mean-squared amplitude
for the sidebranches generated by thermal fluctuations

_ 2(5/3)9/10
<E(Z,Y)>* ~ Qexp {'('3/7)—3?— |2 P/ [1_

L) v )

where the fluctuation strength Q is given in ref.[7], Q% = 2kpT?c,D/(L%vp?).
The estimation for the double-point correlation function at the points (Z;,Y =
0),(Z,,Y =0) gives for 2~ Z, ~ 2

< €1(21,0)£1(2,,0) >= (12)

— _ 2
=< £3(21,0) >Y/? < £2(Z3,0) >3 - cos [Ez&z_zrz_z)] exp [_ (Z: 2lzzz) ] |
where

3/10

5\ 3/10 3
2 = 4(3) Ve |Z|M® , X = 27(3) V3o |z |5, (13)
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Eq.(11) describes an increase in the amplitude with the growth of the dis-
tance from the tip | Z |. This amplitude grows exponentially as a function of
(12)*/%/a'/?). At a fixed distance, | Z |=const., the amplitude slightly decays and
oscillates with Y. The important result is that the amplitude of the sidebranch-
es for the anisotropic needle grows faster than for the axisymmetric paraboloid
shape. In the latter case it grows exponentially as a function of (|Z|'/*/0!/?)
[7]. We think that this effect can resolve the puzzle that experimentally observed
sidebranches have much larger amplitudes than can be explained by thermal noise
in the framework of the axisymmetric approach [7]. Agreement with experiment
would require at least one more order of magnitude in the exponential amplification
factor. Indeed, we find that, for experimental values of ¢ =0.02 and |Z| where
the first clear sidebranches can be seen [8], the ratio between the amplification
factors for the actual anisotropic shape and the parabolic shape is

T for |Z]|=17
exp(Sanis.)/ €xp(Sparat.) z{ 11 for IZ :‘9

The correlation length (or the width of the wave packet) £. and the siderbranch
spacing A predicted by (13) depend on the distance from the tip |Z|. These
dependencies are slightly different from those predicted by axisymmetric approach
[7], but the difference is not so crucial as the difference between the amplitudes,
which grow exponentially with |Z|. For example, at the experimentally relevant
distances |Z|=(7 +9) where the first clear sidebranches can be seen, the spacing
predicted by (13) A ~ 2.0, which is in approximate agreement with experimental
observations and with the spacing predicted by axisymmetric approach [7] as well.

Far down from the tip the sidebranching deformations grow out of the linear
regime and eventually start to behave like dendrites themselves. It is clear that
the branches start to grow as free steady-state dendrites only at the distances from
the tip which is of the order of the diffusion length which, in turn, is much larger
than the tip radius p in the limit of small P. It means that there exists the large
range of Z, 1 € |Z| € 1/P, where the sidebranches grow already in the strongly
nonlinear regime, but they do not behave as free dendrites yet. We can think
of some fractal object where the length and thickness of the dendrites and the
distance between them increase according to some power laws with the distance
from the tip |Z|. The dendrites in this object interact due to the competition in
the common diffusion field. Some of them die and some continue to grow in the
direction prescribed by the anisotropy. This competition leads to the coarsening of
the structure in such a way that the distance between the survived dendrites A(Z)
is adjusted to be of the same order of magnitude as the length of the dendrites
I(Z). The scaling arguments similar to those of Ref.[12] give A(Z) ~ I(Z) ~ |Z|.
The whole dendritic structure with sidebranches looks like a fractal object on the
scale smaller than the diffusion length and as a compact object on the scale larger
than the diffusion length [13]. The mean density of a solid phase in the compact
structure is equal to undercooling A.

One of us (E.B.) would like to thank Y. Couder and V. Hakim for useful
and stimulating conversations regarding the fractality of the dendritic structure.
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