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A number of experimental measurements of A in HTSC have revealed a power
temperature dependence of (A(T) — A(0)) at T & T, which is often considered as
an unambiguous evidence of gap nodes, and ascribed to unconventional pairing.

However, electron coupling to the low-lying excitations with energy T always
gives rise to a power dependence of A(T) even for an S-wave superconductors
without gap zeros. Negligible in conventional superconductors, this effect may be
large enough to be observed experimentally in high-T. compounds. Thus, power
dependence of (MT) — A\(0)) does not exclude S-coupling. In particular, linear and
quadratic temperature dependences of A may occur. Besides analytical results, a
calculational illustration is presented.

The temperature dependence of X is usually associated with that of the su-
perfluid demsity ns: A~2% ~ ng/m* where m* is an effective mass of the carriers.
On the other hand, in case of electron coupling with low-energy excitations (say,
with phonons) m* also gets temperature-dependent. This may result in power
dependence of A(T) even in an s-wave superconductor (see, e.g. [l]), where ns
changes only exponentially at low temperatures. To make this article complete we
reiterate some results of [1]. Pure electron-phonon interaction results in a rather
weak, ~ T® dependence [2] which is at least difficult to observe experimentally
even in strong-coupling superconductors:
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where wp is the Debay frequency.

One reason for appearance of such a high power of T is that in this partic-
ular case thermal excitations — acoustic phonons — transfer small momentums
q £ T/c,, and so their effect on transport properties, including London penetration
depth, almost cancels. To obtain a more pronounced dependence, for example,
quadratic or linear, we phenomenologically assume interaction of electrons with low
energy modes which are quasilocal, so that the momentum transfer in scattering on
such modes remains large (~ pr) as the energy transfer is approaching zero. Given
the effective spectral density of the modes g(E) (in the case of electron-phonon
interaction g(E) is usually referred to as Eliashberg function o?F(E)), we obtain
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so, for a simple form of g,
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AMT) = M0) - 9(E ~T)T (3)
A(0) A )
Such excitations might be related, for instance, with disorder [3]. Depending on

low energy behavior of g(E), different types of AA(T)=X(T)— A\(0) functions may
be obtained.

Origin of the power term in \(T)

Within the scope of the strong-coupling theory of superconductivity the normal
and anomalous parts of the electron self-energy are obtained from the well-known
Eliashberg equations [4] ; for our purpose it suffices to consider the case of an
isotropic clean one-band S-wave superconductor with the same coupling to the
normal and anomalous electron self-energies:
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where the contribution of Coulomb interaction is omitted;
€= (2n + 1)xT,

o [T E9(E)

If the peretration depth A(T) is calculated without including corrections to the
electromagnetic vertez, than:
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where vp is the spectral density of electrons with a given spin projection in
the normal state; we have to introduce the somewhat artificial parameter Vp—
would-be Fermi velocity of the noninteracting electrons; see the discussion of vertex
corrections in the following Section.

It may be shown that at T « T, equations (4), 5, 6 may be rewritten with

exponential accuracy (e~2/T) in the following way:
1 [t ¢
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- where N(E)=[eB/T — 1] ; €. >0, A=AR Z= ZR are obtained by analytical
continuation of Z(ie,), A(ie,). The idea of derivation of equations (7), (8), (9)
was given in [1] It uses the exponential smallness within the gap of the differences
between retarded and advanced Z(e), A(e) [5]: (AR —A4), (ZR - Z4) ~ elld=-2)T
at lej< A

From (7), (8) we obtain:
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FO(TM) ~ oD%, (10)

(A(ie, T) — A(ie, 0)) ~

Additional smallness (~ T2/A?) of change in A is a consequence of Anderson
theorem, as power terms arise from interaction with low-lying excitations [6].
Generally speaking, such a cancellation in temperature dependence of A is model-
dependent. It is due to identical coupling of normal and anomalous electron
self-energies to the low-energy modes, which is not the case if, for instance,

9(E X T) contains contribution from spin fluctuations , or if A is anisotropic (6]
and g(EfvT) corresponds to large momentums ~ pp.

In any case, if corrections to the electromagnetic vertex [1] may be neglected
in calculations of A(T), then from (9), (10) we get estimate (3). Such correction
should be considered if the momentum of thermal bosons g¢r is small in comparison
with prp. Then additional cancellations occur:

MT)~M0)  g(E~TIT (ar)’
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(in much the same fashion as they do in the normal state transport properties)
For phonons (g(E) ~ E?/w? gqr/pr ~ T/wp) it is the vertex corrections that
change the dependence of A\(T) from ~ T3 to ~ T°

Another peculiarity of long-wave excitations is that in calculations of their effect
on the electron self-energy parts the Migdal’s theorem gets incorrect for modes
with momentum ¢ < A/vr As long-wave soft modes slightly affect the penetration
depth, hereafter we restrict ourselves to the case of quasilocal thermal modes, then
for qualitative estimate (2) holds true. Let us formulate some direct consequences
of (2): Fiistly, if g(E) ~ a(E/E:)" then

MT) = A(0) oT™+!
x\0) ~ Era

Secondly, if there is a gap Ep in the spectrum of the coupling excitation, which
is smaller than Ao, than the dependence of (MT) — A(0)) is exponential e~Fo/T

only at TS Eo. In particular, given a low-energy peak in g: g = aEoé(E — Ey),
the dependence of A changes from exponential to linear aT/A at T ~ Eo:
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Figure 1 demonstrates strong effects of low-energy part of g(E) on XT). A% is
taken in dimensionless units:

e A%(ie,y)
DT Y et AP

The dashed curve is A~%(T) computed for the spectral density without a low-

Figure how A(T) in an S-wave
superconductor is affected by
electron interaction with low-
lying bosonic excitations (solid
and -dotted curves). Dashed
curve is A(T) computed in
the absence of such soft ex-
citations. Gap in the elec-
tronic spectrum remains large:
! Ag ~ 200K

energy part: g(E) =2E.8(E — Eo), Eo=200K. The other two curves show A7HT)
when a low-energy spectral density is added: g(E) =2E¢é(E — Eo) + 2E6(E — E1);
E; =15, 5K for dotted, solid curves respectively. As a result, linear dependence of
A~%(T) begins at T ~ E;. Our results are easily generalized on another physically
possible situation when there is coupling with low-energy nonbosonic excitations.
As an example, some effects of disorder may be described in terms of electron
interaction with two-level systems [3]. The associated effective spectral density
g(F) is temperature dependent at thermal energies; in the simplest case [8]

or(E) = go(B)tanh (7 ) (12)
Then
MO GE ~ L[ [or(mrcom (35) - so()] aB-+0 (a5 ~ ni:) 03

Thus the particular case (12) of coupling with two-level centers is exceptional as
the major term in (13) vanishes. Specifically, given a constant low-energy density
of centers go(E), we obtain a quadratic temiperature depencfence,df’ the London
penetration depth )\ for jnteraction with two-level centers given by (12), and a
linear one in a more general model (see also [7]). In any event, if the power term
in MT) mainly results from effects of disorder, it should strongly depend on the
specimen, which may be one of the reasons for discrepancy in experimental data

(see, e.g., [11]-[15]).
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The effect of vertex corrections on the penetration depth in the whole
temperature range (0,Tc)

Near T. the correction result in substitution of the real Fermi velocity of the
interacting system vp for vp in (6):

87 e? Al(ienm)
AHT) = 5 —vpviaT =L ,
(T) 3 2 VFVp™ g z(iem)[63,.+A2(1€m)]3/2
dG! v}
3 dp (6 D PF) 1 __71v

here 4, is the (dimensionless) first spherical harmonic of the vertex function I'*
[9]. At lower temperatures the renormalization of A changes [10]. In particular,
there appears a ’ladder contribution’ [1] of the electron-boson interaction to the
electromagnetic vertex, which can not be found analytically in the general case.
Therefore, we will restrict our consideration to two illustrative examples: If the
gap function is small as compared to the characteristic boson frequency wo then
the BCS-like approximation works: A(i€) ~ const, Z(ie) = 1 + dpp, € K wo. The
zero-temperature penetration depth is {10]

Evm:f, 11—
3 14+ —=20)(=-m)

A7%(0) =

where Apn, AL, are the (dimensionless) zeroth and first harmonics of electron-boson
interaction.
Thus, as temperature varies from T, to zero, the vertex contribution to AT

changes by the factor
(1 =m)(t + Apn)

L+ (pn = A50)(1 = m)’

amounting to (1 —v;) in the weak-coupling limit A,n < 1 Another example, if the
first harmonic of electron-boson interaction may be neglected (i.e. no ’bosonic’
ladder corrections to the electromagnetic vertex are considered), we get

A(iey,)
€2, + A2(ienm )32

A-Z(T) = 8__-11/1:1)’2 1 - n H(T) = WTZ
T AT T (- 0@ 2 Zlien)l

so, the renormalization of A due to vertex corrections changes by

l-m
1 -y (1 -1I(T))
as the temperature drops from 7T,. These examples show once again that in
quantitative calculations of A(T') the corrections to the electromagnetic vertex

should be included, as they multiply the penetration depth by the temperature-
dependent factor, and so they change, e.g.,

(@) = (2)
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It is shown that nodes in the gap are not the necessary prerequisite for a
power low-temperature dependence of the penetration depth. Given considerable
coupling of electrons to soft (F &« T.) short-wave modes in an s-superconductor,
the power term in A(T) is strong enough to be detected in experiments.

It is unclear whether such an s-wave scenario realizes in HTSC, but the question
may in principle be resolved by the experiment.

We also demonstrate the importance of vertex corrections in calculations of the
penetration depth.
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