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Intéraction between spontaneous current loops (orbital magnetic moments)
induced by weak links with negative coupling energies (x-junctions) can cause para-
magnetism of granular high-temperature superconductors. We show that at certain
concentration of w-junctions the system consists of infinite percolating superconduct-
ing cluster and normal regions with frozen-in magnetic field and ordered orbital
magnetic moments.

In was found experimentally [1] (see also Ref. [2] for further references and
review) that magnetization of certain high-temperature superconducting ceramic
samples can crucially depend on whether these samples are cooled below the
critical temperature 7. in zero or nonzero external magnetic field H.. Whereas
zero-field cooled samples showed a usual diamagnetic Meissner response, field cooled
samples were found to be paramagnetic for H, < 1 Oe. Below we will call this
effect Wohlleben effect (WE) [2]. The experimental data [l] for the magnetic
susceptibility of the WE samples x are well described by the expression

X = xo + Mo/(H. + Ho), (1)

where xo = —by/4r (by ~ 0.1+0.2) is a diamagnetic part of the sample susceptibility,
Ho~0.1 Oe and My =b;/4x G (b, ~0.01 +0.1) is a constant magnetic moment.
It was shown in Ref. [l] that the paramagnetic behavior (1) cannot be ascribed
to the effect of isolated magnetic impurities or small ferromagnetic clusters inside
the sample. An interpretation of WE suggested in Refs. [1, 3, 2] is based on the
model of a random network of Josephson junctions with positive (usual junctions)
and negative (so called =-junctions [4]) Josephson coupling energies. There are
various microscopic mechanisms which might cause the presence of =-junctions in
our system (e.g. tunneling via magnetic impurities, unconventional pairing etc.
- see Ref. [2] for further discussion). Irrespectively to a particular physical
mechanism one can show [4] that in the presence of 7-junctions spontaneous
current loops can occur in the ground state of a superconducting system. In
the external magnetic field orbital magnetic moments associated with such loops
become ordered in the direction of this field and the sample acquires nonzero total
magnetization. According to Refs. [1, 3, 2] this may result in a paramagnetic
contribution to x (1).

Sharing the basic idea of this scenario we believe that it is by no means
sufficient to understand the nature of WE. Indeed for H, < H. ~ 10+ 100 Oe
the system is in the Meissner state and therefore orbital magnetic moments inside
a massive 3d superconducting sample cannot be ordered by an external magnetic
field. Furthermore, as the critical temperature 7. for the whole granular array is
always smaller than that for individual grains local spontaneous current loops may
appear already above 7T, resulting in some paramagnetic effect for T > T.. No
indication for this effect has been detected in [I]. At last, a simple estimate for
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the loop magnetic moment x ~ I.a? (the typical loop size is of order of the grain
size @ and I, =2eE; is the intergrain Josephson critical current) shows that for
typical experimental parameters a~ 1+5 um and E; ~ 10 K at T ~ 100 K orbital
magnetic moments can be ordered only by the magnetic field H, > T/u~ 1+ 30
Oe, whereas WE persists down to much lower fields H, ~ 0.03 Oe [1]

In this Letter we propose an explanation for WE which does not face with the
above problems. We first illustrate the main idea of our explanation with the aid
of phenomenological Ginzburg-Landau (GL) functional for a superconductor with a
fluctuating in space critical temperature. Then we derive this GL functional for
a rigorous model of a network which contains both usual Josephson junctions and
w-junctions.

Let us consider a 3d superconducting system and make two assumptions. First,
following [1, 3, 2] we assume that =-junctions induce spontaneous current loops
(orbital magnetic moments) in the ground state of our system. Second, we assume
that the presence of such orbital magnetic moments leads to a local suppression of
a superconducting order parameter which can be described by the fluctuating in
space critical temperature 6Tc(r)/T. =t(r). Then close to a superconducting phase
transition one can describe the system by the phenomenological GL functional

5, 6]
(vr-z—”lA)’ |¢|‘], (2)

where we define 7=T/T.—1 and (t(r)t(x’')) = g6(r —r'). Here T, is the mean field
critical temperature, ¢ ~ 0.1 = 1 depending on the lattice type, A is the vector
potential and ¢o is the flux quantum. The parameters v and g depend on the
details of the model and will be fixed later.

Thermodynamic ﬂuctuatlons of a superconducting order parameter 1 around
its mean field value =+/|7|/y for T < T, can be treated in a standard way.
With the aid of (2) we get ((69)%) = &|7|/2/c*/?, where k ~ 1. Thermodynamic
fluctuations are small provided |r| > 7g, where the Ginzburg parameter ¢

~ (k7)?/c®.  According to the results of Ref. [6] statistical fluctuations of
¥ due to disorder lead to a small renormalization of the critical temperature
T;**=T.(1 4+7n), n<1 and to the dispersion

((69)2)/(#)* = (o / T2, 7p =g*/(8x*c%). (3)
For mp <

K 7¢ such statistical fluctuations are not important and a usual second
order superconducting phase transition takes place at T=T7°" . In this case the
system shows a usual diamagnetic Meissner response and no WE occurs.

For 7p > brg, (b ~ 2.5) the physical picture becomes more complicated. It
was shown in Refs. [5, 6] that due to space fluctuations of T, already above
T7°™ there appear supetconductmg domains with an average size ¢ ~ a(c/7)'/? and
concentration p(7)

F/T= [ 55|+ e ol + -

p(1) = €3S exp(-S), S(r) = A(‘r/rp)l/2 > 1, A~ 378. (4
If one lowers the temperature both concentration of domains and their size

become larger and at pf* = w, =~ 0.15 (see e.g. [7]) they form an infinite
percolating cluster. This condition is roughly equivalent to S(1p) = 3 and yields
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7 ~ (3/A)%71p ~ 1075g%/c3. Thus for 7p > brg global superconductivity appears
at T=1T, =T7"(1 + 7,) due to a percolation phase transition. At T slightly
below T, the superconducting state is essentially inhomogeneous: it consists of
normal regions surrounded by infinite superconducting cluster. The volume of
superconducting phase increases with decreasing temperature and eventually normal
regions disappear.

If one applies a small magnetic field H, above T, and then cools the system
this field becomes trapped in N-regions below T, due to the Meissner effect in
superconducting surroundings. For small enough H, < T,/p magnetic moments
inside N-regions are disordered due to thermal fluctuations. Therefore at T just
slightly below T, no paramagnetism occurs and the superconducting sample shows
a diamagnetic response. However as the temperature is lowered the volume of
N-regions shrinks and due to the magnetic flux conservation the frozen-in field
H(T) grows untdl the value uH(T*) ~ T is reached at a certain temperature
T* < T,. Below T* magnetic moments are ordered, the magnetization M of the
sample is saturated (M = M,) and its response becomes paramagnetic for not very
large H. (1). A rough estimate for Mo ~ p/a® yields Mo ~ 0.01/4r G. Further
shrinking of the N-regions volume with decreasing T is energetically forbidden (the
magnetic energy uH(T) exceeds the superconducting condensation energy) and the
susceptibility x (1) remains temperature independent at T < T*. Exactly the
same behavior (diamagnetic response very close to T. turning to paramagnetic at
lower T) has been detected in Ref. [1]. Large magnetic fields H. > H. destroy
superconducting domains already at T > 7, and WE does not take place. A
rigorous analysis based on the method developed in Ref. [5] yields a physically
transparent estimate H.(7) ~ $o/€%. At T ~ 7, for the parameters of Ref.[l] we
estimate £(7p) to be of order several um and get Hc ~ 10 Oe in a good agreement
with experimental results [1].

Now let us derive the GL functional (2) for a granular superconductor described
by the Hamiltonian

H=— 3" Esr,r')cos(o(r) — o(r')), (5)

(r.x’)

where the sum is taken over Josephson junctions between all neighboring super-
conducting grains with coordinates r and r’ and superconducting phases ¢(r) and
o(r'). We shall consider the Josephson coupling energies E;(r,r’) as independent
stochastic variables equal to E; = Ey > 0 with the probability 1 —p and to
E;=—E, <0 with the probability p. For E, =0 this model has been considered
in details in Ref.[10] with the aid of the replica method, the generalization for the
case E, > 0 is straightforward. Near the critical temperature T, it is sufficient to
introduce only two order parameters %o = (exp(ip®)) and Qap = {expi(p® - %)),
a,f=1,---,m are replica indices. The -field represents a standard supercon-
ducting order parameter for a granular superconductor (see e.g. [8]) and the
Edwards-Anderson order parameter Q.p [9] describes the. ground state of a gran-
ular array with frozen-in spontaneous currents. Proceeding in much the same way
as in Ref.[10] the configurationally averaged free emergy of the system F can be
represented in terms of the path integral over replica fields ¥, and Qup

F=-TdFn/dm|m=o, exp(—Fn/T)= / Dj(r)DQ(r) exp [~ (Ho + Hine)/T], (6)
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where

dr & 2 2ri \’ 1
Ho{¢}=/a—ﬁz{¢., [r—%(vr—;‘%A) ¢;+;1¢ar‘}, (7
a=1
d 1 2
ol Qb= [ 55 |3 Qoo + 3500° + S-50(veQ| . (8)
a.p

As before the parameter 7 is equal to 7=T/T.—1, where for our particular model
the mean field superconducting critical temperature is T, = z[{1 — p)Eo — pEx] [11].
Due to the presence of =-junctions it turns out to be smaller than the standard

mean field result 7. =zE, [8]. The parameter 7, is defined by the expressions

7 =(T/T,)* =1,  T;=+zp(l - p)/2Eo + Ex). %)

In this paper we restrict our attention to the replica-symmetric case Q;ﬁ =Q
described by the unique ground state for each disorder configuration. Calculating
the Gaussian integral over Q@ in (6)-(8) we get

m m 2
Hoett} =4 [ 5|3 Wal' - (Z wulz) N

It is easy to see that after an identification ¢ = 1, and averaging over the
stochastic variable t(r) the GL functional (2) coincides with Ho{%} + Hin:{%}
(7), (10). Comparing the expressions obtained by these two methods we find
y=g-1/2. Note that the replica-symmetric solution of our problem is valid only
for T, > T, or, equivalently, for p < pc ~ (Eo — \/EoEx/22z)/(Eo + Ex). For larger
values of p> p. at T < T, the symmetry between replicas is broken and the phase
diagram of the system is more complicated. In this case it consists of normal
and superconducting spin-glass-like phases with nonzero average value of the order
parameter Q,g. The physical properties of these phases will be studied in details
elsewhere [11].

Let us summarize the results of our analysis. For 7p < brg or, equivalently,
for p<p.—¢, € ~1072/c and a sufficiently high temperature T > T{°" there is
no global phase coherence in our system and the array is in the normal state.
Spontaneous current loops [4] can occur already in this state provided individual
grains are superconducting. Due to the lack of global superconductivity these loops
- if present - are confined to the scale of order ¢ and are completely uncorrelated
in different parts of the sample. For p < p. — ¢ effect of disorder is not important
and at 7T =T7*" the system suffers a usual second order phase tramsition into a
global superconducting state with 1 ¥ 0, correlated spontaneous current loops of
the typical scale ~ Ay > a and standard Meissner properties in relatively small
magnetic fields. No WE occurs in this state.

For larger values of p > p. — ¢ effect of disorder is strong and interaction
between current loops becomes crucially important. In this case superconducting
domains with an average size £ and concentration p (4) appear already above
Tre®. At T =T, these domains form an infinite percolating cluster and the
system becomes globally superconducting. For T < T, the system conmsists of an
infinite superconducting cluster and normal regions with frozen-in magnetic field
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and ordered orbital magnetic moments. This physical picture allows to explain
all main features of WE in superconducting ceramics [1]. We believe that similar
arguments based on the GL free energy (1) also describe WE in single crystal
samples [12].
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