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The situation when the Fermi surface is close to the saddle point of the
electron spectrum is favourable for the formation of the fermionic condensate — a
flat plateau in the quasiparticle energy at the Fermi level. This may explain the
results of the angle-resolved photoemission experiments on YBaCuO and BiSrCaCuO
in normal state, which revealed an "extended saddle point singularity” [1] or "flat
band” [2] in vicinity of the Fermi surface. The Fermi condensate can also appear
in the core of quantized vortices.

Recently it was found (in Hartree-Fock approximation) that at large enough
interaction the Landau Fermi-liquid is unstable towards the Fermi-condensate [3-5].
In this new state the particles with the Fermi energy form the three-dimensional
(3D) flat band instead of 2D Fermi-surface of conventional Fermi-liquid. While
the residual interaction can in principle lift this degeneracy, nevertheless some
topologically stable features can be preserved [6]. On the other hand recent
photoemission experiments on high-T. materials in a normal state revealed an
existence of the flat band at the Fermi level [2]. This singular behavior was
shown to occur in the vicinity of the saddle point of the electronic spectrum [I]
and was interpreted as an extended saddle point singularity. In Sec.] we show
that the situation when the Fermi surface is close to the saddle point is the
most favourable for the formation of the fermionic condensate, which is possibly
manifested as a flat band in photoemission experiments. In Sec.2 an example of
the 1D flat band at Fermi level is discussed, which occurs within the core of
some quantized vortices. The existence of this 1D Fermi condensate is supported
by the symmetry and topology of the vortex.

1. Fermi condensate in the vicinity of the saddle point

For simplicity, following the Ref.[4], we consider an extreme case of the contact

interaction between the particles :

1
E=E(£En5+ iU"-,%) ) (1.1)
E

while the non-contact part is absorbed into the qusiparticle spectrum ;. Let
us assume that the contact interaction U is positive and small and compare two
different cases. (i) In conventional isotropic case the bare quasiparticle energy is
& =vr(k — kp). (ii) Near the saddle point §; =(kzky/m) — u, where the chemical
potential u is counted from the saddle point. Here we assumed the 2D character
of the spectrum in the CuO; planes, ie. {; does not depend on the momentum
k. along the c-axis, and neglected the anisotropy of masses in z,y plane.
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Minimization of the energy in Eq.(l.l1) gives the Fermi condensate: The Fermi
surface {z =0, which takes place at U =0, is smeared at T =0 producing the flat
plateau between two edge surfaces. Within the plateau the quasiparticle energy is
exactly zero:

e-,=T=£,;+Un,;=0 ' (1'2)

(Here we changed the chemical potential by amount U/2 to have the same total
number of particles as in the case of U =0.) The plateau is limited by two
surfaces £ = U/2 and & = —U/2 at which n; reaches the limiting values 0
and 1. In the conventional isotropic case the width of the flat band is small,
dk=ky — ky =U/vp. This width is now to be compared with the width o of the
quasiparticle interaction, which was assumed to be zero in Eq.(1.1). According to
[4], the flat band exists only if ¢ is less than the critical value o* ~ Ufvp. If
o > o* the Fermi liquid behavior is restored.

Now let us consider the case of the saddle point, where in the o =0 limit the
Fermi condensate is concentrated in the region

1 1 1

and again consider the effect of finite 0. For |u| > U/2 the maximal width
of the Fermi condensate is 6k ~ U(m/|u])'/2. When p approaches the saddle
point this width increases and finally approaches the maximal value 6k ~ (mU )M/2
when |u| ~ U. This essential increase of the width of the Fermi condensate in
the vicinity of the saddle point makes it less vulnerable to the effect of finite
o. Now the critical value of o becomes much larger ‘han ia the isotropic case:
ot ~ (mUY/? > Ujvp.

Fig.! Reconstruction of the
Fermi surface in convention-
al Lifshitz saddle-point tran-
sition: (a) before transition;
(b) the Fermi surface at the
moment of crossing the sad-
dle point; (c) after transition

a b : Cc

Now let us consider how the .opology of the Lifshiuz transition, which occurs
when the chemical potential crosses the saddle point, changes when the Fermi
condensate is taken into account. Without the Fermi condensate, i.e. at o > o”,
the transition takes place at one point g =0, where the reconstruction of the Fermi
surface takes place (Fig.l). If o < ¢* the spectrum can have four consequtive
reconstructions. First at pu; ~ mU?/0? two Fermi condensates are formed in the
vicinity of two Fermi surfaces ( Fig.2a). Then at p; =U/2 these two condensates
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Fig.2 Intermediate states with the
Fermi condensate: (a) two scparat-
ed Fermi condensates (painted area)
exist in the region uy < u <
of the chemical potential; (b) con-
densates are merged at u = u; and
(c) one condensate exists in the re-
gion u3 < p < p2, which (d) splits
again in the region us < u < 3.
At u < pug and u > u; there are
pure Fermi surfaces on Fig.lb and

c d la correspondigly

merge (Fig.2b). At u3=—-U/2 the condensates again become separate (Fig.2d) and
finally disappear at pq ~ —mU?2/02.
2. 1D Fermi condensate in the vortex core

Here we consider the 1D fermions localized in the core of vortex in superfluids
and superconductors, first discussed in [7]. The energy E(Q,k;) of these fermions
depends on the momentum k, along the symmetry axis and on the quantum
number @, the eigen state of the generator of the ”axial” symmetry of the vortex
[8,9]. @ is similar to the angular momentum and can be either only integer or
only half-integer, which depends on the type of the vortex and on the pairing
state. The spectrum contains anomalous branches which as functions of discrete
Q cross zero energy. In a large class of vortices the energy of such branch is odd
m Q

E(Q, kz) = Qf(kz) ' (2.1)
and changes sign together with @ . In conventional (s-wave) supercoductor
Q is half-integer for the conventional vortex with single circulation quantum
(m = 1) and the lowest excitation energy corresponds to @ = 1/2 and equals
(1/2)e(k, =0) ~ A%2/Er < A [T].

In general case the Eq.(2.1) does not hold but the main features are preserved.
The existence of the branches, which cross zero as function of @, is prescribed by
the topological arguments[10] in a similar way as the existence of chiral fermions
within the strings in relativistic theories[l11]: the number of anomalous branches
is defined by the winding number m of the vortex: N =2m (and N =m for the
3He-A,, where the pair-correlated state contains only one spin component).

In some vortices @ is integer. This happens for example in m =2 vortices in
a conventional (s-wave) supercoductor, and in m =1 vortices in some non-s-wave
systems [12,9]. In this case Q can be zero, and if one assumes that the Eq.(2.1)
does hold, one obtains an interesting result: all fermions with Q =0 have zero
energy, E(0,k;) =0, ie. the absolutely flat 1D band with Fermi energy exists
within the vortex. Such 1D Fermi condensate was found in the m =1 vortex of
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some special type in superfluid 3He-A [12]. Here we show that the existence of
the flat band is not an artefact of the models used for calculation of the fermionic
spectrum but is prescribed by the symmetry and topology of the vortex. The flat
bands can exist in different p-wave and d-wave pair-correlated systems. Let us
discuss the conditions at which the 1D Fermi condensate exists.

(1) The quantum number Q must be integer for the fermionic quasiparticles. Let
is consider when this condition is satisfied. Q is the eigen value of the generator
Q of the non-broken Abelian symmetry group of the axisymmetric vortices. This
generator is different for s-wave superconductors, and the A, B and planar phases
of 3He, and also depends on the circulation number m of the vortex (8]:

Q,=L,—-—mI s QA=L,——(m+l,)I s QB=Qplanar=Lz+S;—mI . (22)

Here L, is the generator of the orbital rotations, which includes the internal
(isotopic) rotation of the Cooper pair around the center of mass and external
rotation related to the motion of the center of mass; S, is the generator of spin
rotations; I is the generator of ”gauge rotations”, which takes value 1/2 for the
Bogoliubov-Nambu particle, —1/2 for the hole, and 1 for the Cooper pair; I, is
z-component of the unit orbital vector { in bulk 3He-A.

The vacuum state of the system with a given vortex has the quantum number
Q =0, while the excitations (collective modes of the vortex and fermionic quasi-
particles) are described by half-integer or integer values of Q. Since fermionic
quasiparticles have S, = +1/2 and I = +£1/2, their Q take values k — (1/2)m in
s-wave superconductors, k — (1/2)(m +1,) in *He-A and k+(1/2)(1 —m) in 3He-B
and planar state, where k is integer. Therefore in s-wave superconductors Q@ is
integer for fermions on vortices with even m ; in *He-B and planar state - for
vortices with odd m. For ®He-A Q is integer for vortices with even m+{,, which
is just the case in the m =1 vortex considered in [12] since the | vector is oriented
along the vortex axis. The same condition, m 4 I, is even, is satisfied for the
m =1 vortex in the d-wave superconductor with the gap function o k, (k. + iky)
which is believed to be the case in heavy fermionic UPt; (see Review [13]).

(ii) Some discrete symmetry should be satisfied. The symmetry group of the
vacuum with the vortex line, in addition to the continuous axial symmetry Q,
contains also the discrete symmetries. Theses are space inversion symmetry P, and
combined TU; symmetry which corresponds to the overturn of the vortex axis
with simultaneous time inversion: circulation does not change under this combined
operation. One more important symmetry is related to the Bogoliubov fermions:
this is the symmetry under operation C of transformation of Bogoliubov particle
into Bogoliubov hole. Transformation of the quasiparticle spectrum under these
three operations are (see [9]) '

CE(Qrkz)=—'E(_Q1_kz) ’ PE(kaZ)zE(Qv_kz) ] TUZE(Q,kz)=E(Q7kz) N
, (2.3)
The symmetry C is satisfied for any vortex state, while the P and TU, symmetries
are often spontaneously broken in the vortex core [8]. We are interested in only
such vortices in which either the symmetry P or PTU, is conserved which results
in equation E(Q,k,)= E(Q,—k,). Then applying the symmetry C one obtains

E(Qa k,)=—E(—Q,k1) . (24)

This means that for each branch E(Q,k,) one can find the branch with opposite
Q and E: E,(Q,k.)=—E,(-Q,k,).
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(iii) Chirality of fermions on vortices. In the 3He-A; with one spin population,
the m=1 vortex has only one low-energy branch (N =1). Therefore the Eq.(2.4)
inevitably gives the flat band with Q =0: E;(0,k.) = —E(0, k.)=0. The existence
of only one branch which crosses zero as a function of @ is the result of the fact
that the fermions on the low-energy branch are chiral: they have positive E for
positive Q and negative E for negative Q. The chirality is the direct consequence
of the topology and takes place only if m #0.

Now let us check that the flat band occurs for m =1 3He-A vortices, discussed
in [12]. Conditions (i) and (ii) are fulfilled, because m+1I, is either 2 or O for their
vortex and the P symmetry is conserved. As for the condition (iii), there are two
chiral branches (N =2), therefore the equation E,(Q,k.)= —E,(—Q,k,) does not
automatically produce the flat band. However these chiral branches are degenerate
over spin, E1(Q,k;)=E|(Q,k.), if one neglects a tiny spin-orbital coupling. Ther
it follows from Eq.(2.4) that E;(0,k,)=E|(0,k;)=0 for all k.. That is why the
flat zero mode calculated in {12] in a simple model, will survive any perturbation
if they do not violate the vortex symmetry. The same 1D fermionic condensate
should exist in UPt; vortices if the identification of the order parameter in this
heavy-fermion superconductor is correct.

In conclusion, two physical systems where the Fermi condensate is most probable
to occur were discussed: 3D condensate can arise in the metals if the Fermi surface
is close to the saddle point of the electron spectrum, and 1D condensate should
arise within the cores of vortices in supetfluids and supercoductors if some, not
very restrictive, symmetries are satisfied.
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