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The distribution function P(A) of the spacing A between nearest enegry
levels is calculated for one-dimensional disordered sample with a finite length L.
The evaluation proceeds in terms of the Schroedinger equation with a random
potential rather than random matrix ensembles. I consider the common case when
a particle’s wavelength is small comparing with the mean free path. Thus A is
expressed in terms of a solution of the equation with a given energy and all the
moments < A™ > and then P(A) are calculated with the use of recently developed
functional integral method for !D random potential problem.

Statistical properties of the level spacing A in random quantum systems have
been the subject of much investigation from the pioneering works [1-2]. They are
also the focus of attention in the recent papers [3]. On the other hand, the results
of numerical experiments for chaotic quantum systems [4-6] can be interpretated
in terms of quasi-one dimensional quantum mechanics with a random Hamiltonian
[7]. Quasi-one dimensional behaviour is shown to be equivalent in many cases to
the one in strictly 1D random potential problem with some effective parameters
(8-11].

The statistics of A in an essentially disordered case has been studied analytically
in the thermodynamic limit only. The case of a finite sample is, however, of
interest for the physics of mesoscopic systems as well as in the studing of quantum
dynamics in a finite-dimensional Hilbert space [6,12]. In addition, the probability
to find small A is determined completely by finite-size effects (see below).

In the presen Letter I calculate the distribution function P{A}) for a Schroedinger
particle placed on the finite ID interval (—L,L). The potential U(z) in the particle
Hamiltonian H = —d*/dz?+U(z) is supposed to be a random function of z obeying
the white-noise Gaussian statistics: < U(z)U(z') >= Dé(z ~ z’). The result will
be obtained in the ”fast-phase” limit kL > I, kIl > |, where k is the particle’s
momentum and ! =4k?/D is the localization length. The relationship between [
and L is arbitrary. ‘

I use here essentially the results and notations of the paper [13] where the
new functional integral approach to the !D random potential problem has been
developed.

The eigenfunction t(z) of H is the solution of the equation (H ~k3)y(z) =0
obeying some conditions in the points 2 =—L and z=1L, eg. ¢(—L)=1v(L)=0.
Let us consider the solution wug(z) of the Caushy problem (72—~k2)uk(m) =0,
ug(—L) =0, uj(—L)=1. If we represent ux(z) as a(z)sin¢i(z) then in the fast
phase limit mentioned above the level spacing is equal to:
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(There is no summation over k in this formula). Indeed, excluding the free motion
we see that the phase ¢p(L) can be written as ¢p(L) =2kL + ®,(L/l), where the
contribution ®,(L/l) is due to the potential and depends on the parameters of the
problem via the ratio L/l only. This term as well as its derivative with respect to
k are not small by themselves. However, the next derivatives of &, with respect
to k have the additional factor 1/k! comparing with 8;®, and can be neglected.
Requiring the variation of the phase between two nearest levels to be equal to 27
we come to the formula (1}). With the same precision it leads to the expression
of A in terms of ui(z):

r\2 2,2
A=2r (ur)? + k%up lor= 2mkvy (L)v2(L) ‘ )
: ukakujc —u;cakuk L
[ vi(y)va(y) dy
L

Here u} = 8,ur and the "plane wave components” vy ;(z) = et*™* (u}(z) £ ikui(z))
are introduced. The formalism developed in the paper [13] allows us to represent
the moments < A™ >,m > 1, as quantum mechanical matrix elements:

m nkl\™ 1 _ im
<A™ 5= (T) o7l 2L8| o= (mt1/2)8), 3)

where ¢ is the coordinate of this 1D quantum mechanics and H has the form:

" 1 1 1
=__§2 —_— -£ -
H lt")£+4le +4l' (4)
The brackets < ...]...|... > in the right hand side of (3) and below denote

usual scalar product: < f1(€)|A|f2(€) >= f d¢ f1(€)Af2(€) where fi2(€) are some

functions and A is some operator. From a given set of moments we can restore
immediately the Laplace transform P(s) of the distribution function P(A). Using
the integral representation (formula 8.315 in [14]) of 1/I'(m) we come to the
expression:

P = 3o 0% am om 1 (@A, ), ®
m=0 :
where
i ks
= __e-E/ it g il et
(6) ) 7l' 2/ dte‘ Xp( 21( +’lt) )'

The matrix element in (5) can be evaluated noting that

+o00
1 1 dv .
_l_ef/2 =3 / — cosh mv (Kz,-,,“(le'f/z) - sz-l(le—flz)) ) (6)
and i
AKyips1(let/?) = T F V) Kaipaa(le” ¢, (M
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The last equality means that (6) represents the function e¢/2 a a linear combination
of eigenfunctions of H. 1) Substituting (6), (7) into (5) and performing the inverse
Laplace transform we obtain after some manipulations:

400
/Al 2 sm(ZVL/l)
lc7r3 /choshTexp (—2—cosh )/du ” (8)

L
x cosh v exp (—271/2 + 21'1/1') .

In deriving (8) the integral representation (8.432 in [14]) of the function K,(z)
was used. In the limit L — oo for a given A the expression (8) is reduced to the
well known Poisson distribution [15]:

P(a) = -ilé;exp <_%) . 9)

Finite-size corrections to (9) have order of magnitude ~ exp(—L/2l). When A — 0
and L ~ [ the asymptotics of the function (8) has the form:

[ ! ( 8xk 2L\® | . 8xk

where the function F(z) is equal to

}'(z)=\/gexp (:;(1—1“)_%(1” 1)2). (11)

Thus, if A — O the distribution function P(A) goes to zero faster than any
power of A and cannot be described rigorously by Wigner distribution with any
set of parameters. This point differs from results of numerical simulations of
quantum chaotical systems [6] and it could be a consequence of topology of
the boundary conditions. The logarithmically normal distribution (10) does not
correspond, however, to any self-averaging quantity. The lage A-tail coincides with
the function (9). _

The representation (1) becomes exact in the small scattering limit. Thus,
the final expression (8) must reproduce in the limit I — oo equidistant levels
structure. Indeed, changing the integration variable v — vI/L we reduce dvdr-
integration to saddle points (r = ¢7/2,v = £x/4) contribution. The latter gives
P(A) =6(A —nk/L).

It is worth noting that the expectation value of the inverse level spacing
< 1/A > calculated by means of the distribution (8) is not affected by localization
effects:

L
-1 =
<aTi>= (12)

for an arbitrary /L.
I would like to express my thanks to B.V.Chirikov for stimulating advices. I
am grateful to D. Shepelyansky for discussions.

)The functions presenting in both sides of (6) are not normalizabile and it cannot be considered
as an expansion over a basis in the Hilbert space.
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