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The quantum interference correction to the counductivity is calculated for
2d electrons in cubic A3Bs srystal with spin-orbit splitting by solving appropriate
Cooperon cquation. The spin dependent vector-potential due to spin orbit-interaction
leads to considerable changes compare to Larkin-—Hikami~Nagaoka expression.

Weak localization corrections to the conductivity of 2d structures in magnetic
field were obtained by Hikami et al in their pioneering work [1]. Only the spin-orbit -
skew scattering mechanism ( Elliot-Jaffet mechanism) of electron spin relaxation
was considered as the origin of spin-orbit effect on conductivity.In subsequent
works on the weak localization the spin-orbit effects for 2d conductors without
inversion center were treated exclusively in terms Dyakonov-Perel spin relaxation
time in close analogy with the, skew scattering effect (see e.g.[2,3]).Recently [4-6]
it was demonstrated that the spin-orbit interaction effect on the weak localization
and universal conductance fluctuations should be considered as an effect of spin-
dependent vector potential and important terms connected with this vector potential
were shown to exist in the Cooperon equation.Such an approach considerably
changes the results [1,2] on the spin-orbit interaction effects.In the present paper
we study the anomalous magnetoresistance.Its experimental investigation is the most
convenient tool for the examination of the weak localization effects [3,7,8],and the
improvement of theoretical formulae is important for the determination of various
relaxation times as well as the spin orbit splitting.For this purpose we solve here
exactly the Cooperon equation which is obtained by direct using Green functions
which explicitely include spin-orbit terms in the Hamiltonian.

We consider here quantum wells with the normal to 2d plane in (001) direction
of A3Bs cubic crystal. In that case the Hamiltonian for 2d electrons has the form
(we assume h=1).
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Wheie o; are Pauli matrices and Q; = —91 cos p—§23 cos 3p, €1, =y sin p— 3 sin 3p,

= yk(kZ — 5;), Qj = 14, tanp = g¥, lc2+1c2 Here k? "f| ]Zdz is the
mean square of electron momentum in the dlrectlon perpendlcular to 2d plane,
3 is the electron wave-function, k;, k, are the components of inplane electron
momentum, v is the constant of spin-orbit interaction. We assume anisotropical
elastic scattering and introduce the probability of the scattering W(J) per angle
9 per unit time. '
The weak localization correction is expressed in terms of Cooperon amplitude
C(q,9,kr), where g is small total Cooperon momentum, ¥ is the angle defining
the position of electron momentum on the Fermi surface k=kp. (See e.q. review
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Fig.l. Graphical representation of Cooperon equation

[S]) which is defined by graphical equation on fig.1. Green functions (fat lines)
entering Cooperon equation are expressed in terms of Hamiltonian (1) and elastic
relaxation time 7o ‘
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where G* is 2 x 2 matrix in spin indices; I is unit matrix and
1
- - / W (9)d9. 3)

By usual in weak localization theory procedure the equation for Cooperon amplitude
C=C(q,9,kr) can be solved by perturbation theory assuming 1/7, large compare
to spin orbit energy splitting and vpg (vp is Fermi velocity). The Cooperon
amplitude can be expanded in Fourrier harmonics of J9 and it turns out that
arising first and third harmonics are small and can be expressed in terms of zero
harmonic Cy. The substitution of higher order harmonics in the zero harmonic
equation gives the effective matrix equation for Co(kr,q):
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LCo =
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where

- 1 1
L=‘ro{; + ivf:quﬁ +2(05n + Q37) (1 + o4p- +0-pi)—
v
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Here we introduce the inverse phase relaxation time 1/7, as a qﬁt off at small ¢,
the transport times

;1; - / (1 = cos )W (8)dd, ;13.= / (1 — cos 30) W (6)db, (6)

the density of states vo= 7%, 03 = %(az:{:iay), Pt = %(p,:i:ipy) are the combinations
of Pauli matrices acting on the upper and lower spin indices of fig.l respectively,
I is the product of the unit matrices in the same basis, ¢+ =¢q; + igy.

The solution of the equation (4) can be represented in the form

a 1 1 .
Coi(9) = 5o Z 7o ¥ma(@ B)¥ng(1,6), (7
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where .4, Er(q) are normalized eigenfunctions and eigenvalues of the operator L:
Ly, = E ¢, ' (8)

These eigenfunctions can be classified by the value of the total spin momentum
of two particles: antisimmetrical singlet ! = 0 (r = 0), and symmetrical [ = 1
(r=1,2,3), in the latter case we use also the basis of functions with integer spin
momentum projection on Z-axis ®j=1nm (m=1,0,-1).

The quantum interference correction to the conductivity is proportional to (see

e.g. [2]) the sum
1
q) Z 2‘KVOT0( Eo ZE . (9)

r=1

The singlet eigenvalue Fy does not depend on spin orbit term
1 1
Eo = (qu + —)To, D= —‘U%-Tl.
T 2

The triplet eigenvalues can be also easily found by solving the equation (8)
(for the total momentum [=1) with

1
L=1,[Dg* + .. 2037 + Q2r3)(2 = J2) — mvpiV2(J4gr + 7o), (10)

where J is angular momentum operator: J = %(&'+ p) and Jy = %(ai + p1)-

is convenient to express the sum of inverse eigenvalues in (8) directly in terms
of the coefficients of secular equation.Such an approach gives us a possibility to
find the solution of the problem in the case of applied magnetic field. Using the
expression (8) for S we get by standart procedure the weak localization correction
to the conductivity without magnetic field retaining only logarithmic terms

2
AO’(O) = —E—VoToD/S q2
U

ez 1 Ty 1 T1 1 T1 T1
=——-{——-In—+In(— =In(— 11
27r2h{ 2 n'7',, (Tv + -rs”)+ 2 (T,,, + TSzz )} (1)
Here 151" = ;slj = z_r;" = 2(917'1 + Q373), where 7si; are the spin relaxation times
defined by equation %i= rs., [7,8]. From the expression (11) we see that with

the logarithmic accuracy the spin-dependent vector potential terms in Cooperon
equation are not essential for temperature dependent corrections to the conductivity
0

In the presence of magnetlc field B the quantities g+, ¢> entering eq.(5,10) are
defined by gauge invariance and become g, =+/2Sa, g- =V2Sa*, where 5% =22,
a,at are operators increasing and decreasing the number n of Landau level of the
wave function F,:

(ata)Fp=(n+ %)F,., aF,=\nF,_1, a¥F,=+v/n+ 1F, 1.

The eigenvalue Eg(n) does not depend on spin-orbit interaction and is given
in the paper [l).According to eqn. (8), (10) the solution $(n) in the basis of the
functions ®;—;m with momentum projection m has the form

$1(n) = (f1,r (n) Faz2, for(n) Fa1, f-1,-(n) Fa). (12)
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 The substitution of (12) in the equation (8), (10) gives the system of algebrac
linear equations for the determination of f;; and the determinant of the appropriate
matrix gives the secular equation for the elgenva.lues E.(n) (r=1,2,3). In the
case n=0, F,_1, F,_; must be set to zero and there is only one eigenvalue E,(0).
In the case n=1 F,_, must be set to zero and there are two eigenvalues E;(1),
Ej(1) defined by appropriate quadratic equation. For all other n > 2 there are
three eigenvalue E,(n)(r —1,2,3) defined by cubic equation. As well as for the
case without magnetic field the sum (9) can be expressed directly through the
coefficients of secular equation without solving it. Being short of place we give
the final expression for the conductivity correction:

2 2 1+ Hso
Aa(B)=_ZeT{l G0t 1+ 55
R % ay(ao+ Hg2) - 25
i[:& 3a2 + 20,852 — 1-2(2n + 1)H50 ]+
Sl (an+ EE2)an_1a041 — 2752((20 + Van — 1]
H, 1 H
+2In ‘+¢(§+—“’)+3C}, (13)
B
where .
1 H, Hso _ ch _
swmnt gt GG g g Heo= g p(nin + 200n)
Hyo= edin; Hio=o—; w(l+2)=- +§: (14)
so = 4D 17 " 4eDr’ nln(n+z)

’

and C is Euler constant. If we omit terms containing ﬂg_o_ we obtain Hikami-
Larkin— Nagaoka expression from (13):

2 1 H, H H, 2H
‘ {¢(5+—"+ﬂ)+ zp(i + =22

Ao(B) — Ac(0) = Vi _E’i 3 )-

22

1.1 =&,

f§‘¢(i+F)—ln —=ln + 5

H,,,-}-Hso 1 H¢+2H50 1 HW

B 2 B T F} (13)
but for magnetic field B ~ Hgo formulae (13) and (15) are numerically dif-
ferent.Fig.2 gives the dependence Ao(B) — Ac(0) calculated in accordance with
eq.(13) for Hso/Hy =4, HSO/HSO—I 1/2,1/4 and Hg, =0 when (15) is appli-
cable.Realistic values of —-:—Q- are close to 1 and we see that in this case the value
of Ao(B)—Ac(0) for B more large than H, and Hso is essentially increased.It is
explained by the fact that for nonvanishing H %o according to (13) Ac(0) contains
beside the logarithmic term (11) a large additional contribution which also vanishes
in strong magnetic field.

The other difference (besides the difference in 71,73) compare to the papers
(2,3] is in the value of Hso in (13), (15) which is twice as large in terms of the
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same Hamiltonian. The relaxation time introduced in (2, 3] ;;1;- =< 02 > 1 (here

< Q2 > is the average over the Fermi surface) by definition does not coinside with
spin relaxation times, which are [9,10]

1
TSii
(For comparing results it is necessary to remind that in [9,10] the spin orbit

Hamiltonian is in form Hgso = 1/25€, instead of (1)).Similiar remark concerns 3d
case which was considered in [2]. :

=2(< > - <>

Ac/(e%/4n%h)

il /

Fig.2. Magnetic field dependence of
the conductivity corrections in the
| units e/4n*h for Hgp/H, = 4, and
0 10 20 30 40 B/H, ff’s{g)/Hso =0 (1), 025 (2), 05 (3),
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