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Deviation of the level correlation function in a mesoscopic metallic sample
from the Wigner—Dyson distribution is calculated by using a combination of the
renormalization group and non-perturbative treatment. For given spatial dimension
the found correction is determined by the sample conductance.

The problem of level correlation in quantum systems attracts interest of physi-
cists since the work of Wigner [1]. The random matrix theory developed by Wigner
and Dyson [2] describes well the level statistics of various complex systems, like
nuclei or atoms. Later on, Gor’kov and Eliashberg [3] put forward an assumption
that the random matrix theory is also applicable to the problem of energy level
correlations of a quantum particle in a random potential. This hypothesis was
proven by Efetov, who showed [4] that the level-level correlation function R(w) (its
formal definition is given below) is described by the Wigner—Dyson distribution
for w « E;, E. being the Thouless energy. For w 3> E., the behavior of the
correlation function changes because the corresponding time scale w~! is smaller
than the time E;! the particle needs to diffuse through the sample. The form of
the correlation function in this region is dependent on spatial dimensionality and
was calculated in Ref.[5] by means of the diffusion perturbation theory.

In the present Letter we find a correction to the Wigner—Dyson distribution
in the region w ~ A « E;, A being the mean level spacing. This is not a
trivial task, because we calculate a correction to the result which is essentially
non—perturbative.

We study the two-level correlation function R(s) defined as

R(s) = #ME)V(E +w)), (1)

where s =w/A, v(E) is the density of states at the energy E and (...) denote
averaging over realizations of the random potential. As was shown by Efetov
(4], ‘the correlator (1) can be expressed in terms of a Green function of certain
supermatrix o-model. Depending on whether the time reversal and spin rotation
symmetries are broken or not, one of three different o-models is relevant, with
unitary, orthogonal or symplectic symmetry group. We will consider the case
of the unitary symmetry (corresponding to the broken time reversal invariance)
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throughout the paper; the results for two other cases will be presented at the
end. The expression for R(s) in terms of the o-model then reads:

R(s) = (%)zRe/DQ(T) [/ddrstrQAkr
-exp{—’;—" / d1Ste~D(V Q) — 2iwAQ]} : 2)

Here Q = T"'AT is 4 x 4 supermatrix, with T belonging to the coset space
U(1,1)2), A=diag{l,1,-1,-1}, k=diag{l,—1,1,-1}, Str denotes the supertrace,
V is the system volume and D is the classical diffusion constant. To find the
detailed description of the model and mathematical entities involved, a reader is
refered to Refs.[4, 6].

For w € E. ~ D/L* (L being the system size, so that V = L?%) the leading
contribution to the integral (2) is given by the spatially uniform fields Q(r) =
= Q. Then the functional integral in eq.(2) reduces to an integral over a single
supermatrix Q and can be calculated yielding the Wigner—Dyson distribution [4]:

sin?(7s)
(rs)?

The aim of the present paper is to calculate a correction to eq.(3) due to spatial
fluctuations of Q(r) in eq.(2). The procedure we are using for this purpose is as
follows. We first decompose Q into the constant part Qo and the contribution
@ of higher modes with non-zero momenta. Then we use the remormalization
group ideas and integrate out all fast modes. This can be done perturbatively
provided the dimensionless (measured in units of e?/h) conductance g =E./A > 1.
As a result, we get an integral over the matrix Qo only, which has to be
calculated non-perturbatively. We believe that this combination of the perturbative
renormalization-group-type and non-perturbative treatment is of a methodological
interest and might be used for other applications.
To begin with, we present the correlator R(s) in the form

Ryp(s)=1-

)

R(s) = (2,” o / DQ exp{-F(@)}uzo ;
F(Q)= ——/Str(VQ) /StrAQ+ﬂ/StrQAk (4)

where 1/t = avD/4, § = #s/2iV, 4 = 7u/2:V. Now we decompose Q in the
following way ;

QN =T5'Q(NT (3)
where T, is a spatially uniform matrix and @ describes all modes with non-zero
momenta. When w < E,, the matrix Q fluctuates only weakly near the origin
A of the coset space. In the leading order, @ = A, thus reducing (4) to a
zero-dimensional o-model, which leads to the Wigner-Dyson distribution (3). To
find the corrections, we should expand the matrix @ around the origin A. This
expansion starts as [4]

’ 2
Q=A(1+W+WT+...) , (6)
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where W is a supermatrix with the following block structure:
0
w ( ta 0 ) . (N
Substituting this expansion into eq.(4), we get
F=Fo+F1+0(W? ;
1
Fo= / Str [?(VW)Z + §Q0A+{2Q0Alc}
1
Fi=3 / Str[sUAW? + U AW?) (8)

where Qo =Ty ATy, Up = ToATy !, Uox = ToAkTg'. Let us define F.z4(Qo) as a
result of elimination of the fast modes:

e~ Fe11(Q0) = ¢=Fo(Q0) (o= F1(Qo. W)y, (9)

where (...),, denote the integration over W. Expanding up to the order W*, we
get

fefj=fo+<f1)—%(.7:f)+%(.7:1)2+... (10)

The integral over the fast modes can be calculated now using the Wick theorem
and the contraction rules [4, 7]:

(SttW (r)PW (¥)R) = I(r — #)(Str PStrR — Str PAStrRA) ;

(Str[W (r) P]Stx[W(7)R]) = II(r — 7)Str(PR — PARA);

I(r) = / (d 1 e:fgg’) (11)
where P and R are arbitrary supermatrices. The result is:
(F1)=0;
(F3) = % / drdr’TI2(r — /) (3StrQoA + 4StrQoAk)?. (12)

Substituting eq.(12) into eq.(10), we find

Fer1(Qo) = —-sStrQoA + 2—uStrQoAk + 16 2 —=_(sStrQoA + uStrQoAk)? ;
1 > 1
D D (e R (13)

nl,...,n¢=0
n+...+n3>0

The value of the coefficient ay depends on spatial dimensionality d. In particular,
for d=1,2,3 we have a; =1/90 =~ 0.0111, a; =~ 0.0266, a; ~ 0.0527 respectively.
Using now eq.(4), we get the following expression for the correlator to the 1/g%
order:

R(s) = (21 ik / on{ (StrQoAk)’ 2sﬂ(suqu)Z]—
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aqd magq
- W(StIQOAk))z + ES(StIQoA)(StIQQAk)z} <

- exp{~ %ssquA}. (14)

This integral over the supermatrix Qp can be calculated by using the known
technique [4], yielding

sin®(rs)  aq . 4
rs)T + g7 sin“(xs). (15)

The last term in eq.(15) just represents the correction of order 1/¢* to the
Wigner—Dyson distribution. The formula (15) is valid for s « g. Let us note
that the smooth (non-oscillating) part of this correction in the region 1 < s<yg
can be found by using purely perturbative approach [5, 8]. For s> | the leading
perturbative contribution to R(s) is given by a two-diffuson diagram:

R(s)=1-

A? 1
Rurds) =1 = 3R 3 pagypT
q,-=1rn,-/L
n,-=0,1,2,...
- R : 16

At s € ¢ this expression is dominated by the ¢=0 term, with other terms giving
a correction of order 1/g%:

1 a4
Rperz(8)=1—m+m ) (17)

where ag was defined in eq.(13). This formula is obtained in the region 1 < s <yg
and is perturbative in both 1/s and 1/g. It does not contain oscillations (which
cannot be found perturbatively) and gives no information about actual small-s
behavior of R(s). The result (15) of the present Letter is much stronger: it
represents the exact (non-perturbative in 1/s) form of the correction in the whole
region s < g.

The calculation presented above can be straightforwardly generalized to the
other symmetry cases. The result can be presented in a form valid for all three
cases:

Rp(s) = (1 + _‘i"Tdez) RYP(s), (18)

where B =1(2,4) for the case of orthogonal (unitary, symplectic) symmetry; R};VD
denotes the corresponding Wigner—Dyson distribution, explicit form of which can
be found e.g. in [4, 9]. ( We denote by g the conductance per one spin projection:
g =E./A=vDL% 2% without multiplication by factor 2 due to the spin.)

For s —» 0 the Wigner—Dyson distribution has the following behavior:

R,V,VD ~cpsf; s> 0,
x? n? nt
€= 2% 35 4”3y (19)
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As is clear from eq.(18), the found correction does not change the power (3, but
renormalizes the prefactor cp:

Rg(s) = (1 + B+ 22)g3 +1) 7:;2) cgs® 5 s—0. (20)

The correction to cg is positive, that means physically a weakening of the level
repulsion.

In conclusion, we have calculated the deviation of the level-level correlation
function Rg(s) in a mesoscopic metallic sample from its universal Wigner-Dyson
form, using the supersymmetric sigma-model approach. The found correction is of
order 1/g%?, where g is the dimensionless conductance. It does not change the
power 3 of the s? behavior of the correlator R(s) as s — 0, but renormalizes the
corresponding prefactor.

To get this result, we developed a novel method of calculation which combines
perturbative elimination of fast diffusive modes (in spirit of renormalization group
ideas) and subsequent non-perturbative evaluation of an integral over the zero mode.
In the present paper we have used it to find the eigenvalues correlation function,
but it may have other applications. In particular, deviation of eigenfunctions
statistics in diffusive regime from the random matrix theory predictions can be
successfully studied in this way [10].
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