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Drift Lagrangian for relativistic particle in intense laser field
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The Lagrangian and Hamiltonian functions describing average motion of a relativistic particle under the
action of a slightly inhomogeneous intense laser field are obtained. In weak low-frequency background fields,
such a particle on average drifts with an effective, relativistically invariant mass, which depends on the laser
intensity. The essence of the proposed ponderomotive formulation is presented in a physically intuitive and
mathematically simple form, yet represents a powerful tool for studying various nonlinear phenomena caused
by interaction of currently available smooth ultra-intense laser pulses with plasmas.
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The latest advances in high-power laser technology
have resulted in the development of laser systems ca-
pable of delivering superstrong electromagnetic pulses,
which can be focused to intensities as high as 10!
W /cm? [1], with even more powerful systems coming
up in the near future [2]. The currently obtainable laser
fields can accelerate electrons up to ultra-relativistic os-
cillatory velocities, previously unachievable in experi-
ments on laser-matter interaction. This revolutionary
progress is now giving a new life to theoretical studies
on particle behavior under the action of intense electro-
magnetic radiation. The conventional models describing
various nonlinear phenomena in plasmas illuminated by
high-frequency radiation nowadays need to be revised,
as new, ultra-powerful laser systems are becoming avail-
able for laboratory experiments. To explain the already
observed phenomena and predict new effects taken place
under the action of intense laser drive, adequate de-
scription of single-particle motion under relativistically
strong radiation must be developed first.

Currently, particle motion is well-understood when
the only forces present are those from the wave of uni-
form intensity [3]. However, to study the guiding center
dynamics in inhomogeneous laser radiation or drifts de-
termined by the presence of low-frequency background
fields, additional analysis is needed. Expanding the con-
ventional understanding to this area would result in a
substantial progress in studying a number of plasma
physics problems, such as, e. g., Coulomb collisions
and energetic particle production in strong laser fields.
Moreover, the hydrodynamics and the electrodynamics
of laser-illuminated plasmas would readily be available
for general revision.
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Often, the dynamics of a particle moving in a high-
frequency field is described in terms of the ponderomo-
tive approach. In nonrelativistic ponderomotive descrip-
tion, the effect of high-frequency electromagnetic forces
on a particle is replaced by particle interaction with an
average potential, linear on the intensity of laser radi-
ation [4]. When ultra-intense lasers are employed, this
conventional description needs to be generalized to rel-
ativistic motion. Contrary to the degenerate case of a
circularly polarized field, in which high-frequency vari-
ations of the relativistic mass can be neglected [5], the
problem of particle motion in the case of a linear or ellip-
tic polarization represents a certain challenge, but still
can be studied analytically.

To describe the drift particle dynamics in such fields,
recently, multiple studies were performed. Under vari-
ous approximations, it was shown that the oscillating
particle guiding center drifts in a smooth laser field
with an effective mass, which depends on the electro-
magnetic field intensity [6—9]. (In strongly nonuniform
laser fields though, the particle dynamics is more com-
plicated [6, 10].) The Hamiltonian treatment of the rela-
tivistic drift under intense laser drive has been proposed
in Ref. [11], though the problem of interaction with low-
frequency background fields has not been studied. The
first steps towards developing the general formalism with
such interaction were made in Ref. [8]. However, only
smooth (compared to the amplitude of oscillations) low-
frequency background fields were taken into consider-
ation and the relativistic drift motion equations were
induced without proper justification.

These shortcomings are overcome in our paper,
which major emphasis is twofold. First, we propose a
general, fully relativistic Lagrangian formulation of pon-
deromotive description of particle motion under the ac-
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tion of a quasi-monochromatic slightly inhomogeneous
laser field. The proposed approach is physically intu-
itive yet more systematic and simple in comparison with
those discussed previously. After natural generalization,
it allows including particle interaction with weak back-
ground forces, additional to those from the laser field.
The discussion on that aspect of the guiding center mo-
tion constitutes the second emphasis of our work. We
show the effective mass concept to be applicable to pon-
deromotive description of relativistic particle motion in
low-frequency background fields, including even ones of
small spatial scale compared to the amplitude of oscilla-
tions. In the end, we discuss the most promising appli-
cations of the proposed formulation and summarize our
main ideas. To start, consider particle motion under the
action of a plane laser wave propagating in vacuum, with
vector potential given by

A(r,t) = (mc*/e) a(n), (1)

where n = wt — k - r stands for the phase of the wave,
w is the wave frequency, and k = z%w/c represents the
wavevector. The polarization of the wave will be as-
sumed fixed though arbitrary. The magnitude of a,
a = eE/mcw (where E is the laser electric field), can
be understood as the ratio of the momentum imparted
by the wave field in a single oscillation to me¢, meaning
that relativistic effects become important at @ > 1. (For
the wavelength A = 2w¢/w = 1 pm, the intensity corre-
sponding to a ~ 1 for electrons is about 10'® W/cm?.)
In a certain, unique, frame of reference, in such
a field the particle undergoes stationary oscillatory
“figure-eight” motion in a linearly polarized wave or cir-
cular motion in a wave with circular polarization [3]. Av-
eraging over the oscillations, one comes to the concept of
the guiding center motion, which we study below. First,
let us consider the variational principle that states the
minimum value of the action
ta

s=[ La, 2)
t1

where L is the Lagrangian function of the particle mo-
tion to be realized on the true trajectory. On time scales
ty — t1 large compared to the oscillation period, the ma-
jor contribution to the action S (linear on ¢, — ¢1) is
provided by the time-averaged part of the Lagrangian,
(L), while the contribution of the oscillatory Lagrangian
into the integral (2) remains small (for precise analysis,
see Ref. [9]). Thus, the action S is approximately given
by S = fttf (L) dt, from where it follows that (L) can be
treated as the Lagrangian of the average, guiding center
motion.
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To obtain the form of the drift Lagrangian Ly = (L),
let us consider the latter in the frame of reference where
the guiding center rests. In the new frame, the guiding
center Lagrangian Lo can be nothing but a constant,
which we put in the form

Lo = _meﬂ'cza (3)

in analogy with the Lagrangian of a true particle with
zero velocity. The formally introduced quantity mes
playing a role of a new, effective mass is yet to be de-
fined. The action (2) is relativistically invariant and can
be written as S = f:f Lo d7, where the time T represents
the proper time of the guiding center. Since dr is invari-
ant by definition (and thus, so is the Lagrangian L),
the quantity meg must also be relativistically invariant.

Using
dr =dty/1—%/c?,

where vy is the velocity of the guiding center in the orig-
inal frame of reference, one gets the Lagrangian of the
guiding center motion

Lo = —megrc®y/1 — v} /c2, (5)

which formally coincides with the Lagrangian of a rela-
tivistic particle with mass meg moving with velocity vg.
Since the original frame was chosen arbitrarily, the above
expression represents the general form of Lo, where meg
is left to be expressed in terms of the parameters of the
laser field.

Let us calculate Lg in a laboratory frame of refer-
ence where the particle has a nonzero average velocity
vg. Instructive by itself, the derivation to follow will also
provide us with a number of useful relations connecting
the parameters of the particle drift and those related to
the actual motion. To proceed, consider the Lagrangian
of the particle true motion given by

L:ﬂmﬂh—g+SWan% (6)

which is a known periodic function of the phase 7 rather
than time ¢. Thus, in order to average L over time, one
needs to derive a relation connecting time averaged and
phase averaged quantities. For an arbitrary quantity f,
its time and phase averaged values given by

Lodr = Lodt,  (4)

1 t+A 1 n+2m
=z [rae, T-o [ rar, @
n

t

where the limits of integration over the phase correspond
to the limits of integration over the time (i. e. n = n(t)),
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and the time interval A is defined as one on which the
total phase change equals 27:

A= —dn. (8)

The time interval A coincides with the wave period 27 /w
only if particle motion is nonrelativistic. However, gen-
erally, the phase time-derivative is given by

A N G e

where vy = (1 — v?/c?) ~*/? is the normalized relativistic
energy (£ = myc?) and p = m~yv it the particle kinetic
momentum.

Since the original Lagrangian depends on 7 (that is,
on the combination z—ct, rather than z and ¢ separately),
there exists an invariant of motion given by

u = — p,/mc = const. (10)
Substituting the above expressions into Eq. (7), one gets

(fy=~f/7. (11)

Note that the obtained formula is valid only in case when
the electromagnetic wave (1) is propagating in vacuum.
If the refraction index of the medium differs from unit,
Egs. (9) and (10) need to be modified, and the relation
between time- and phase-averaged quantities becomes
more complicated [11].

From Egs. (10) and (11), it follows that

¥= \/1 (p/me)? + a2, Y=m\1+d?, (12)
where yp = (1 — v}/c?)~1/2, and
vo = (v) =Pp/m7 (13)

is the drift velocity of the particle (compare with the
inexact expression given in Ref. [6]). Thus, Ly can be
put in the form (5) with meg given by

Meg = mA/1 + €2 A2 /m2ct. (14)

The guiding-center Lagrangian (5) with the expres-
sion (14) for the effective mass was also obtained in Ref.
[9] by a somewhat similar yet a complicated and not a
straightforward procedure. In the cited work, Eq. (14)
was supposed valid only in the frame of reference where
vo = 0. In fact, as shown above, it remains applicable
for arbitrary vg, and, more than that, the actual value
of mes must be relativistically invariant. To express the

effective mass in the invariant form, let us notice that,
in the laboratory frame where we chose the electric po-
tential ¢ = 0 (see Eq. (6)), VA2 coincides with the
norm of the 4-vector potential /A, A%, A* = (¢, A).
The latter is Lorentz-invariant [3], and remains such af-
ter being averaged over relativistically invariant phase
7. Thus, the expression for mes, invariant to relativistic
transformations, can be put in the following form:

Mer — m\/

Eq. (15) was also given in Refs. [8] where the average
particle motion was studied otherwise.

Reverting to the formula for the drift Lagrangian
(5) with the effective mass given by (14), the canoni-
cal momentum of the guiding center motion Py equals
the phase-averaged kinetic momentum p = megyovo,
and thus the Hamiltonian function of the guiding center
motion can be put in the form

Hy = /m2gc* + PEc2. (16)

Here mes may smoothly depend on the guiding center
location Ry and time ¢ if the wave envelope is slightly
nonuniform or time-dependent. Precisely, that means
that the laser intensity “seen” by the particle changes
insignificantly on one period of particle oscillations, so
that the averaging (7) still makes sense, i.e.

L (A A%). (15)

I>r., T>A luw>4A,  (17)

where [ and T are the spatial and the temporal scales
of the wave envelope (for detailed analysis, see Refs.
[6, 10, 12]).

An alternative derivation of Eq. (16) can be found
in Ref. [11], where a sequence of canonical transforma-
tions of the original motion equations was shown to lead
to a similar result. In the present paper, we showed
this tedious procedure to be unnecessary for obtaining
the expression for the drift Hamiltonian. Comparing to
the cited work, the distinguishing advantage of the for-
mulation proposed in the present paper is that, because
of its apparent mathematical simplicity, this formulation
allows easy generalization of the drift Lagrangian and
Hamiltonian formalism on the case when the oscillating
particles undergo weak acceleration by large-scale low-
frequency forces satisfying (17). Interaction with these
forces enters the expression for Ly additively and, what
is most important, can still be considered in the frame-
work of the effective mass concept.

T o show this, consider an oscillating relativistic par-
ticle interacting with a field governed by the 4-vector
potential Aj, = (g, Ang), Where the subindex “bg”
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stands for a background field, additional to the one of
the laser wave. Assume that the field is weak:

eEpg/Yomesc K w,  eBpg/vomesc L w,  (18)

where Ey; and By, are the corresponding electric and
magnetic fields. In this case, the background fields do
not impact the oscillatory motion significantly. Thus,
averaging of the kinetic term mc?/v in the Lagrangian
leads to the same expression as in Eq. (5) with meg
given by Eq. (15). In the zeroth-order approximation
with respect to the small parameters (18), the average
part of the Lagrangian corresponding to particle interac-
tion with the background field can be expressed in terms
of the quantity Ag = (¢, Ag) given by

Ag = <Agg (Ro +r.) > (19)

The time-averaging procedure is invariant with re-
spect to changing the drift frame of reference, i. e. does
not alter the Lorentz transformation properties of the
quantity being averaged. Thus, A§ represents a true
4-vector and can be considered as a new, effective elec-
tromagnetic field. In terms of this field’s potentials, the
drift Lagrangian can be put in the following form:

/ v e
Lo = —meﬂc2 1-— c—g + P (vo - Ag) — ego. (20)

In certain applications, it is of interest to consider
particle interaction with background fields having spa-
tial scale I < ro. If the drift velocity is small, so
that the drift displacement on a single period voA is
small compared to lpg, the ponderomotive description
still can be applied. However, in this case the difference
between the time-averaged potential A and the true
potential A7, taken at the location of the guiding center
Ry, is crucial. For example, this situation is realized at
Coulomb scattering in intense laser fields when r. ex-
ceeds the radius of effective interaction [13]. Note that,
as follows from the above analysis, the characteristic am-
plitude of the effective potential remains unchanged as
one generalizes the expression for ¢ to the case of rela-
tivistic particle motion. In this case, the only difference
in calculating ¢¢ is provided through the change in the
oscillatory trajectory r. (t) to be averaged over.

In the context of the Coulomb scattering problem,
the considered Lagrangian approach represents a unique
tool for studying ponderomotive and even stochastic be-
havior of particles being scattered. This problem de-
serves detailed consideration and will be discussed in
future works, though, briefly, the extension of the pro-
posed formulation can be explained as follows. Sto-
chastic behavior of a dynamical system with periodic
8 IIucema B #R3TD TOM 78
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coefficients is often convenient to describe in terms of
mapping of the dynamical trajectory onto a subspace of
the system phase space (for review, see Ref. [14]). For
the Hamiltonian mapping (Ro, Po) — (Ro, Po) connect-
ing the particle locations and momenta before and after
the time interval equal to the period of the laser field,
the generating function is given by the action (2) with
t1 =t and t; = t + 2w /w [14]. Since the obtained drift
Lagrangian is approximately proportional to S, it can
readily be used for constructing the actual form of this
mapping. As will be shown in our future publications,
when studying the statistical properties of particle sto-
chastic dynamics (rather than single particle motion) by
means of such a mapping, the conditions (17) can be
significantly relaxed, which substantially broadens the
proposed Lagrangian approach applicability. That also
allows a significant progress in studying the problem of
energetic particle production in strong laser fields [15].

Since, in the case of relativistic drift, r. depends
on vg, the expression for the canonical momentum
Py = 8L¢/dve the drift motion equations become com-
plicated. However, in two special cases of interest, those
can be simplified. In a large-scale background field sat-
isfying the conditions (17), locally, Aj, can be treated as
a linear function of r. Therefore, the velocity-dependent
part averages out when calculating the potential A§, and
one gets Ay ~ Af,. Thus, the drift canonical momen-
tum equals Pg = megyovo + (€/c)Apg, and the Hamil-
tonian function is given by

2
Hy = \/T’I’Lzﬂ-c4 + (PO - SAbg) 2+ e¢bga (21)

where the potentials are assumed to be slow functions of
Ry and t. The guiding center motion equations can be
put in the covariant form

dR§ vy dpg € B 2ameﬁ'
= — = —-FPUz — 22
dr Meg dr ¢ b8 PTC ORg’ (22)
where R§ = (ct,Ryq) is the 4-coordinate of the guid-
ing center, p§ = (£o/c, MegyoVo) is the drift kinetic

4-momentum, £ = megyoc? is the energy of the guid-
ing center motion, F{)’gﬁ is the electromagnetic field ten-
sor corresponding to the potential Ag’g [3], and U* =
= 9o(c, Vo) is the guiding center 4-velocity. Covariant
Egs. (22) were also given in Ref. [8], though no strict
derivation of those was proposed. Another expression
for the relativistic ponderomotive force is given in Ref.
[9].

From Eq. (21), it follows that, in low-frequency
large-scale background field, the guiding center of a rela-
tivistic particle moving under the action of intense laser
radiation behaves as a particle with the effective mass
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Meg drifting in the same background field. This conclu-
sion is also supported by direct numerical computations
given in Ref. [8]. For example, in static magnetic field
By, the guiding center undergoes Larmor motion with
the frequency wp = eBpg/Yomegc. Conventional ex-
pression for the drift velocity in nonuniform magnetic
field [3] also applies to the average motion if the particle
mass is replaced with the one given by Eq. (15).

In addition to the case of large-scale background
fields, the guiding center motion equations can also be
put in a simple, physically intuitive form in the case
of nonrelativistic drift motion. Since the drift velocity
enters the expression for A§ only through relativistic
dependence of r.. on vg/c, then, in the case vy <K ¢,
0Ag /Bvg can be neglected. In this case, the drift canon-
ical momentum is given by Py = megvo + (€/c) Ay, and
the Hamiltonian can be put in the form

1
Hy =

2
= (Po - EAo) + megrc’ + e, (23)
2Mest c

where the effective mass meg and the potential energy
et = Megc® + edy may slowly depend on the guid-
ing center location Ry and time ¢. Note that even in
uniform laser field, Vg may differ significantly from
eV g when the amplitude of particle oscillations r.. ex-
ceeds the spatial scale of the background field / [13]. The
regime of slow drift motion superimposed on relativis-
tic oscillations is the one, which is actually realized in
many current experiments on intensive laser pulses in-
teraction with rare plasmas. (Under rare plasmas we
assume those having a refraction index close to unity,
as assumed for all the results obtained in the present
paper.) This fact makes the above analysis especially
useful from the practical point of view, as it represent a
simple tool for studying the actual experimental data.
Finally, the well-known nonrelativistic ponderomotive
potential [4] can be readily derived from Eq. (23) by
keeping the correction to the effective mass, linear with
respect to the wave intensity (see also Ref. [9]).

In summary, we showed that, in weak low-frequency
background fields, relativistic particle moving under the
action of intense laser radiation drifts like a quasi-
particle with an effective mass, which depends on the in-
tensity of the laser field. The intuitive expectation that,
by the order of magnitude, the drift motion equations
must coincide with those without the laser field if the ap-
propriate relativistic correction of particle mass is intro-
duced, can now be considered proven for various types
of background fields. The proposed formulation can be
useful for studying numerous phenomena resulting from
intense laser-plasma interaction, such as, e. g., the en-
ergetic particle production and Coulomb scattering in

strong laser fields. Moreover, the mathematical simplic-
ity of the proposed approach allows easy generalization
of the rare plasma hydrodynamics and electrodynamics
to the case of plasmas illuminated by ultra-intense laser
radiation. Replacing the electron mass with the effec-
tive mass (15), one can readily derive the generalized
dispersion relations for various linear waves in plasmas,
as well as revise the nonlinear plasma dynamics.
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