Pis'ma v ZhETF, vol. 75, iss. 7, pp. 419 —424

© 2002 April 10

Excitations in quantum hall ferromagnet with strong Coulomb

interaction

S. V. Iordanski, A. Kashuba
L. D. Landau Institute for Theoretical Physics RAS, 117334 Moscow, Russia

Submitted 7 March 2002

Quantum Hall ferromagnet is considered at integer fillings v provided typical Coulomb interaction energy
E. is large compared to the cyclotron energy wg. Low energy collective modes consist of magnetoplasmon
exciton and gapeless spin exciton. All charged excitations have a gap. The activation energy gap for a pair of
charged topological excitations — skyrmion and antiskyrmion — is small A = vwy. Electric charge of skyrmion
is multiple ¢ = ev@, where @ is the integer topological charge.

PACS: 71.27.4a, 73.43.—f

Commonly used theoretical approach for 2D elec-
tron quantum Hall state is to consider the limit of ex-
tremely large cyclotron energy wgy compared to typi-
cal Coulomb interaction energy E. when electron wave
functions can be projected onto the states of few lowest
Landau levels [1-3]. The simplest case corresponds to a
non-degenerate Fermi gas with all states within the low-
est Landau levels being filled. In particular one finds a
ferromagnetic ordering due to the exchange Coulomb in-
teraction. In the limit r, = E./wyg — 0 it is possible to
find exactly energies and wave functions of electron and
hole excitations as well as various collective excitations
with charge and spin distortions of the ground state [1—-
3]. This model features also topological charged exci-
tations — skyrmions — that renders the activation energy
two fold lower then that for an electron — hole pair excita-
tion [4]. But in real experiments the condition of small
rs is violated and for Si heterostructures and organic
MOSFETSs based on molecular crystals this violation is
quite severe with r, ~ 10 [5, 6]. Newly developed AlAs
heterostructures also fall in the class of strongly interact-
ing 2DEG. Some predictions of the standard theoretical
model are not consistent with experiments even in the
simplest case of integer filling v. The most apparent
discrepancy concerns the activation gap for charged ex-
citations which is found to be substantially smaller than
the predicted exchange Coulomb energy [6] and linearly
depends on the strength of magnetic field. In this let-
ter we consider quite opposite case of theoretical model
with Coulomb interaction being large compared to the
cyclotron energy: r, = E./wg > 1. In spite of calcula-
tional difficulties it is possible to make some predictions
concerning the lowest energy of various collective exci-
tations and charged topological excitations skyrmions in
this limit.
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Obviously at strong Coulomb interaction the ground
state does not coincide with the Hartree-Fock ground
state where electrons completely occupy several lowest
Landau levels (L1). Actually one has to take into ac-
count virtual transitions to a number of higher LI’s and
therefore the projection of electron wave function onto
few lowest Ll states is invalid. It is difficult to con-
struct analytically the ground state wave function or to
find corresponding correlation functions. The ground
state of an ideal electron gas with integer Ll fillings
is nondegenerate and therefore it is possible to use a
perturbation theory in powers of interaction and to as-
sume in the spirit of Landau Fermi liquid theory that
the exact summation of perturbation series will preserve
the ideal Fermi gas classification of one particle exci-
tations. There are quasielectron and quasihole excita-
tions with different energies e.(s) and ex(s) where the
index s counts discrete energy levels of charged quasi-
particles in magnetic field. In Ref.[7] an excitation gap
Agp, = mingy (e¢(8) — en(s')) = 0.1 E. was established
numerically. These levels must be degenerate in con-
tinous index p that specifically dependes on the gauge
because of the existence of magnetic translations com-
muting with the Hamiltonian but not commuting be-
tween themselves. One particle Green function matrix
G (p,w) is not diagonal in inter Ll indices n and n' but
it is diagonal in intra Ll index p. w is the time Fourrier
frequency. We assume that one particle Green function
has simple poles at these energies:

As
Glp, s w) ~ w —€ge(s) —id’ (1)
Clp,s0) > ———
5 W) w—en(s) +id’

Here the index s denotes quasiparticle eigenstates
diagonalizing the Green function G, (p,w) =

4*
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> s On(8)G(p, s,w)dr, (s) where ¢,(s) is the one
particle quasiexcitation wave functions.

It is possible to relate the position of chemical poten-
tial p assumed to be inside the excitation gap A.p with
the total density of electrons just like it is done in the
case of usual Fermi liquid theory, considering the phase
and analitical properties of the Green function [8, 9]. We
consider a special topological invariant constructed from
the Matsubara Green functions [10]:

y 2m/Tf (0,0) VG (pw)d.  (2)

Integrand is a logarithmic derivative of one particle
Green function on the plane with two axis being the
Matsubara frequency w = iw and the continuous gauge
index p. G (w,p) is a matrix with inter L1 indices n
and n', and the gradient is a vector in p,w plane. If
the contour C is drawn in a region p,w free of singu-
larities in log(det G) then the integrand (2) is a closed
form and therefore gives topological invariant quantity
not depending on the form of closed contour C in this
region. If there is no singularity inside the contour C
then v’ = 0, otherwise it gives some integer number be-
cause the complex matrix G is single-valued. Assuming
Landau gauge, the variable p coincides with Y coordi-
nate of the center of electron orbit, which is restricted to
the area of the sample occupied by 2D electrons. Fermi
liquid electron Green function (1) has no singularities or
zeroes inside the sample and the only singularity of the
integrand can be found on a boundary at small w due
to the existence of edge states. Therefore integration
over a macroscopically large rectangular contour C' with
sides parallel to p and w axes (see Figure with dashed

C

Contour C of integration for topologial Green func-
tion invariant. The dashed area coincides with the

2DEG sample

region representing the 2DEG) gives some integer num-
ber depending on the position of chemical potential and
related to the edge plasmon modes. In this case one

can neglect the contributions to (2) from the horizontal
sides since G is essentially 1/w not depending on p deep
inside the 2DEG due to the gauge invariance. The only
nonzero contribution comes from the vertical side of C
inside the 2DEG because the integration over the other
vertical side outside the sample gives zero (no electrons
in any state). Thus we get the integer:

Sy (60w o6 t00) 5o O

—00

for any p inside the sample. Using the definition of the
density in terms of the Green function [8]:

e ws AW
N = Z/ TrG (p,w) ™’ et 4)
P —00

where § — +0, and the definition of the self energy:

n' (sapvw)a (5)

we rewrite the density in a convenient form:
o 0

N = Tr |G(p,w)=—G~
) [ m ooy

M]

G L (p,w) = (W= nwm)dpn — Zn

Yp,w)+

iwd dw

+G(p,w) (6)

2mi

Ow

Due to the existence of the Luttinger and Ward func-
tional [9] variation of which reads:

X = Z/fo Tr $(p, 5,0)0C(p, 5, ) ‘;—: (7)

we can eliminate the second term in the brackets as be-
ing zero exactly. Summing Eq.(3) over all p we get in
accordance with Eq.(6) the total number of electrons

S
N:VZ:VM, (8)
p

assuming the periodic conditions along y direction p =
= n/2wLy, L, > 14p > 0 and 13, = ch/eH. This
gives a standard expression for the electron density
ne = v/2ml%. Thus we have shown that our Fermi liquid
assumptions for electron Green function are valid only
for electron density corresponding to the integer fillings.

It is possible to establish the properties of low en-
ergy collective excitations in the large r, limit. One of
these excitations is the magnetoplasmon mode or Kohn
exciton associated with the following operators in the
Landau gauge

I*(q =% / A (5, F ij,)dr. (9)
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Here j(r) is the current density operator in the second
quantized representation and Landau gauge

o1 .0 N
Jz—i{‘f’*("%)‘“’% }
and

e 51)

Operators I1*(q) raises/lowers Ll index by one unit
whereas operators I1+(0) commute with the Coulomb
part of Hamiltonian

"= [V@r@r-ags. 0

where p(q) is Fourrier component of the density operator
¥t (r)y(r). Commutator of II*(0) with the kinetic en-
ergy can be easily calculated and we get: HIIT(0)|0) =
(wr + Eo)II*(0)|0), where |0) is the ground state wave
function, and Ej is the ground state energy. Thus I1*|0)
is also an eigenstate of the Hamiltonian — a statement
known as celebrated Kohn theorem [11]. It gives the
lowest energy of magnetoplasmon. Similarly we find:
I1-(0)|0) = (Eo — wg)II~(0)|0). This is compatible
with the assumption that |0) is the ground state only
if II7(0)|0) = 0. This property originates from the ideal
Fermi gas and survives switching on interaction.

Kohn exciton being neutral can be classified by mo-
mentum vector q and the operator IIT(q) is essentially
the first term in expansion of true exciton creation op-
erator in powers of q. Finite momentum gives rise to
a dispersion of Kohn exciton we;(q) = wg + dwez(q)-
It is possible to find the main part of this dispersion at
small q exactly.

The derivation can be done in terms of density opera-
tor p(q,t) and current density operator j(q, t) in Heisen-
berg representation. There are two equation of motion —
the continuity equation for density:

dp
L iiq-jlq = 11
5 Tiai(@=0 (11)
and the equation of motion for current:
dj e
N " Hxj . . 12
5t = molt X3(@) tnea V(g)p(a) (12)

It is straightforward to find a ’hydrodynamic’ expres-
sion for the frequency of magnetoplasmon at small g
(glg < 1):

Wez (q) = \/wfq + %V(q) . (13)
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One can check that the corresponding two particle Green
function has a pole at frequency (13). At very small
q we get dwe.(q) = €?v|q|/2. The hydrodynamic
Eqs.(11), (12) are valid only at ¢ < /n. that gives the
Kohn exciton limiting energy bound: we;(q) < Aep =
R \/€2Ne/Ne/m.

The other collective mode is Goldstone spin wave
created by an operator:

st@ = [ e vl (nodvalniy,
ot = (0, tioy)/2,

(14)

where o; are Pauli matrices. These operators commute
with the total Hamiltonian at ¢ = 0 in the exchange
approximation (neglecting spin-orbit and Zeeman inter-
action terms). This fact is a consequence of the global
symmetry of the Hamiltonian with respect to rotations
in a spin space. Spin wave excitation are also neutral
and therefore are classified by momentum q. The dis-
persion curve is quadratic at small q and for small 7
was calculated in Refs.[2, 3] to be €54,(q) ~ E.(qlm)?.
However in the opposite limit of large r; spin wave dis-
persion is €5, = wrm(qly)?/2 at small q, as we show
below.

In 2D ferromagnet special topological textures of
spin order parameter field known as Skyrmions with
nontrivial mapping of the entire 2D plain onto the unit
sphere of spin directions are allowed [4]. In order to find
the energy of such topological excitations it is necessary
to start from microscopical quantum Hamiltonian for
electron spinors, because phenomenological non-linear
sigma model and it’s parameters must be derived. Our
approach is the same as in Ref.[12] where the case of
small 75 has been considered. But that publication con-
tains few faults and we repeat briefly the main points
here. To establish a procedure for construction of the
electron wave function describing skyrmion and to calcu-
late it’s energy it is usefull to introduce a unitary matrix
U(r) which rotates initially uniform spinor field x4(r)
at every point of 2D plane. The Coulomb energy is in-
variant under any nonuniform rotation ¢ (r) = U(r)x(r)
because local density p(r) = 9T (r)y(r) is obviously in-
variant. Therefore the total transformed Hamiltonian
takes the form

H= % /x+(r)(—iV + A(r) + Q(r))%x(r) d® r+

43 [V =@ e@xa) drdr, (15)

where the matrix field Q(r) = —iUTVU = Q6! can
be expanded in terms of the Pauli matrices o!. We con-
sider only the case of large skyrmion core compared to
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the magnetic length g, i.e. only small gradients of U(r)
and small vector functions 2'. The main assumption is
that it is possible to use a perturbation theory in powers
of Q(r) starting from the ferromagnetic state as a lead-
ing approximation. Matrix U depends on three Euler
angles and it is topologically non-trivial only if there
exists some nonzero winding number for two of its Euler
angles. Using the frame with spin direction at large
distances as z axis we can parametrize U as three con-
secutive rotations

U(aa /6’ 7) = Uz(a)Uy(:B)Uz (7)1

where angles a and <y describe rotation around z di-
rection having the same winding number in 2D plain,
whereas the angle 0 < 8 < 7 describes a rotation around
some perpendicular direction taken to be y. The condi-
tion of identical winding number for a and 7 is related
to the requirement for matrix U to be nonsingular over
the whole 2D plain which is essential to allow for a per-
turbation theory in 2. In this case

1
0% = 5(1 +cosB)Va,
1, . .
Q° = §(s1nﬂcos aVa —sinaVp),

1
QY = 3 (sinBsinaVa + cosaV i),

We see that vectors Q' are well defined and smooth pro-
vided point singularities of a coinciding with the points
where B(r) = . At r — oo, 3(r) — 0, therefore U(r) is
uniquely defined over entire 2D plain. The nonsingular
part of angle a — 1 is irrelevant and we set it to be zero.
The topological integer invariant is given by

Q:%/Vxﬂz d’r. (16)

In this construction U(r) is defined as an external clas-
sical matrix field in electron Hamiltonian. Complete
quantum description of matrix field U(r,t) or equiv-
alently skyrmion wave function is a difficult problem.
In quantum field theory different topological sectors are
considered separately without transitions between [13].
We use this approach assuming a large skyrmion core
making these transitions improbable. In Hamiltonian
(15) Q7 and Q! with I # z describe different effects and
can be treated separately up to the second order of per-
turbation theory. That allows us to cast the kinetic part
of Hamiltonian in terms of Q':

= o [X°0)

2

[—iV +A(r) + Q% | x(r) d&®r +

+Z/

r)Q'o; (—iV + A) x(r) d®r +
l#z

Z / (n’>2 L. (17)

l;éz

We see that Q° defines additional effective vector po-
tential and corresponding effective magnetic field having
opposite sign for two spin states. Up to second order in
Q% we can consider only reference ferromagnetic spin
up configuration. Any term in skyrmion energy can be
expanded in gauge invariant terms therefore it depends
only on V x QF and it’s derivatives. The second term
in kinetic energy can be rewritten in terms of excitonic
like creation operators

2m2/ {olxt o x(e) +

12
+ Qb (r)x“‘am"‘}x(r) d’r, (18)
where Q- = Q, £iQ, and
n~ = 90/0x —i0/0y + «,
*t =-9/0x —1i0/dy + .

(19)

Kinetic term (18) can be expressed in terms of a com-
plicated spin-flip magnetoplasmon exciton — excitation
that combines both charge and spin and is created by
an operator

= [wt@oEmao) ', 20

Operators A*(0) do not commute with the Coulomb
part of Hamiltonian. Therefore their dispersion is de-
termined by diagrams with large internal momenta and
cannot be found analytically even at small q. Even in the
limit r;, — o0 any excitation frequency must depend on
the kinetic part of the Hamiltonian because pure poten-
tial interaction leads to extreem degeneracy of electron
states with zero velocity. Therefore the energy of this
spin-flip excitons must include the kinetic part of the
Hamiltonian. The proper scale is given by the energy of
Kohn exciton at large g ~ 1/lg: Aep ~ /€2n¢y/Nc/m.

In the first order of perturbation theory there are
three terms in QHF energy. The first is

) 2
0F; = 2m2 / n Y r, (21)

where (p(r)) is the ground state average density, and two
terms due to the change of effective magnetic field: the
local change of cyclotron energy

Nucema B MATP® Tom 75 BemM.7-8 2002



Excitations in quantum hall ferromagnet with strong . .. 423

5EH=%Z(TL+%)/VX
n,p

X Q0xE, (M) Xnp(r)[0)05, (1) np (r) dPr,  (22)

where Xnp, xip are creation operators for the n’s Ll state,
and the correction to the local exchange energy

1 [ OE,

OFe: =3 | Bm

V x Q*(r) d’r, (23)

where E,,(H) is the exchange energy density in a uni-
form ferromagnetic ground state.

The calculation of skyrmion energy in the limit of
small 7, has been done in [12] up to second order ex-
cept for missing correction (23) to the exchange energy.
Adding this to the results of [12] in the case of v = 1 for
the 2D Coulomb interaction gives skyrmion energy for

small rg:
2
B =13 (01 -2Q) (24)
H

that coincides with the earlier results of Refs.[14, 15].
The main new feature for the case of large r, appears
in the second order perturbation term in T':

1

5E2 = <0|TE0 _H

T10), (25)

T is connected to spin-flip magnetoplasmon operators
(20) with small q (18) because Fourrier transform of
Q!(r) contains only small q. Operator T acts on the
ground ferromagnetic state and therefore only the term
with ot that reverses the spin is essential. We get for
second order term the estimate

5By v
*T VAL
Though this contribution is negative and thus decreases
the skyrmion energy we can neglect it in the limit of
strong Coulomb interaction. We want to emphasize here
that in the opposite limit of small r, this term gives an
essential contribution to total skyrmion energy.

Spin structure of skyrmion and antiskyrmion is iden-
tical except for the sign of winding number. Therefore
their additional Zeeman and direct Coulomb energies
are the same. In the activation energy for the creation
of skyrmion antiskyrmion pair with opposite topologi-
cal charges () and —@) all terms that are proportional to
V x Q7 cancel:

Ask = Esk(Q) + Esk(_Q) =

14

<L wg. (26)

(Q2 + QZ) d’r = vwg|Q|. (27)

- 4mm
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The last equality in (27) holds for a special Belavin—Po-
lyakov ansatz for skyrmion’s matrix U (r) that minimizes
the energy of QHF. Result (27) coincides with large 7,
extrapolation of skyrmion energy for the case of small
rs at ¥ = 1 obtained in Ref.[16].

If we consider nonuniform rotation U(r) with vani-
shing winding number we obtain a gradient energy in
nonuniform ferromagnet:

2 2
_p On o 1 / On 2
0B = Sm/ (6mk) d'r = 167rywH Oz, d’r,

(28)

where n = (sinfBcosa, sinf@sina, cosf) is the unit
vector in the direction of local spin. This gradient en-
ergy gives a spin wave dispersion: wsp = wgq?/2.

The local electron density is determined by the local
magnetic field:

v . H
p(r):M(l+Vxﬂ E) (29)

according to our classification assumption that the den-
sity coincides with that for ideal Fermi gas. Therefore
the electric charge of skyrmion is

q:g/Vxde%:euQ (30)
2

and the activation energy per electron or hole charge is
given by Agetiv = war/2. This quantity is proportional
to magnetic field and is small compared to Coulomb ex-
change energy E.. That is qualitatively in accordance
with experimental data for activation energy. We do not
discuss here the mobility of skyrmions that may alter
qualitatively the mechanism behind experimentally ob-
served activation energy.
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