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On Kelvin—Helmbholtz instability in superfluids
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The Kelvin-Helmholtz instability in superfluids is discussed, based on the first experimental observation of
such instability at the interface between superfluid *He-A and superfluid *He-B (R.Blaauwgeers, V. B. Eltsov,
G. Eska et al., cond-mat/0111343). We discuss why the Kelvin—Helmholtz criterion, the Landau critical ve-
locity for nucleation of ripplons, and the free energy consideration all give different values for the instability

treshold.
PACS: 47.20.Ma, 67.57.Np, 68.05.—n

1. Classical Kelvin-Helmholtz (KH) instabili-
ty. KH instability belongs to a broad class of interfa-
cial instabilities in liquids, gases, plasma, etc. [1]. It
refers to the dynamic instability of the interface of the
discontinuous flow, and may be defined as the instabili-
ty of the vortex sheet. Many natural phenomena have
been attributed to this instability. Most familiar of them
are generation by wind of waves in the water, whose
Helmbholtz instability [2] was first analyzed by Kelvin
[3], and flapping of sails and flags analyzed by Rayleigh
[4] (see recent experiments in [5]).

Many of the leading ideas in the theory of instability
were originally inspired by considerations about invis-
cid flows. The corrugation instability of the interface
between two ideal liquids sliding with along each other
was first investigated by Lord Kelvin [3, 6]. The critical
relative velocity |v; — vz| for the onset of corrugation
instability is given by

1 pip2

VvVoF .
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Here o is surface tension of the interface between two
liquids; p1 and p2 are their mass densities; and F' is re-
lated to the external field stabilizing the position of the

interface: typically it is the gravitational field

(2)

The surface mode (ripplon) which is excited first has the
wave vector

F=g(pr—p2) -

ko =+/Flo, (3)
and frequency
wo = KLUt P20z )
pP1 + p2
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The excited ripplon propagates along the interface with
the phase and group velocity: Vmpplon = (P1v1 +
+ p2v2)/(p1 + p2)-

However, among the ordinary liquids one cannot find
an ideal one. That is why in ordinary liquids and gases
it is not easy to correlate theory with experiment. In
particular, this is because one cannot properly prepare
the initial state — the planar vortex sheet is never in
equilibrium in a viscous fluid: it is not the solution of
the hydrodynamic equations if viscosity is finite. That
is why it is not so apparent whether one can properly
discuss its ‘instability’.

Superfluids are the only proper ideal objects where
these ideas can be implemented without reservations,
and where the criterion of instability does not contain
viscosity. Recently the first experiment has been per-
formed in superfluids, where the nondissipative initial
state was well determined, and the well defined thresh-
old has been reported [7]. The initial state is the nondis-
sipative vortex sheet separating two sliding superfluids.
One of the superfluids (*He-A) performs the solid-body
like rotation together with the vessel, while in the other
one (*He-B) the superfluid component is in the so-called
Landau state, i.e. it is vortex-free and thus is stationa-
ry in the inertial frame. The threshold of the Kelvin-
Helmholtz type instability has been marked by forma-
tion of vortices in the vortex-free stationary superfluid:
this initially stationary superfluid starts to spin-up by
the neighboring rotating superfluid.

2. KH instability in superfluids at low T'. The
extension of the consideration of classical KH instability
to superfluids adds some new physics. First of all, it
is now the two-fluid hydrodynamics with superfluid and
normal components which must be incorporated. Let
us first consider the limit case of low T', where the frac-
tion of the normal component is negligibly small, and
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thus the complication of the two-fluid hydrodynamics is
avoided. In this case one may guess that the classical
result (1) obtained for the ideal inviscid liquids is ap-
plicable for superfluids too, and the only difference is
that the role of the gravity is played by the applied gra-
dient of magnetic field H, which stabilizes the position
of the interface between *He-A and 3He-B in the exper-
iment [7]:

F = (1/2)(xa(T) - x&(T))V(H?). (5)

Here x4 and xp are temperature dependent magnetic
susceptibilities of the A and B phases.

However, this is not the whole story. The instabili-
ty will start earlier, if one takes into account that there
is a preferred reference frame. It can be the frame of
container, the frame of the crystal in superconductors,
or even the frame where the inhomogeneity of magnetic
field H is stationary. The energy of the excitations of the
surface, ripplons, can become negative in this reference
frame, and the surface modes will be excited, before the
onset of the classical KH instability.

Let us consider this phenomenon. We repeat the
same derivation as in case of classical KH instability, as-
suming the same boundary conditions, but with one im-
portant modification: in the process of the dynamics of
the interface one must add the friction force arising when
the interface is moving with respect to the container wall.
In the frame of the container, which coincides with the
frame of the stable position of the interface, the friction
force between the interface and container is

Flriction = _Fatc ) (6)

where ((z,t) is perturbation of the position of the inter-
face:

z=20+((z,t) , {(z,t) = asin(kz —wt) . (7)

We assume that the velocities v; and v, are both along
the axis z; the container walls are parallel to the (z, 2)-
plane; and the interface is parallel to the (z,y)-plane.
The friction force in Eq.(6) violates the Galilean in-
variance in z-direction, which reflects the existence of
the preferred reference frame — the frame of container.
This symmetry breaking is the main reason of the essen-
tial modification of the KH instability. The parameter
T in the friction force has been calculated for the case
when the interaction between the interface and container
is transferred by the normal component of the liquid due
to Andreev scattering of ballistic quasiparticles by the

interface [8]. The friction modifies the classical spec-
trum of surface modes:

o (L -n) 4o (2 w) = EEE g
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(8)
or
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\/P1+P2\/ k k Pl+P2(1 2)? (9)

where v; and v2 are the velocities of superfluid compo-
nents of the liquids with respect to the container walls.

For I' = 0 the spectrum of ripplons acquires the
imaginary part, Imw(k) # 0, at the classical treshold
value in Egs.(1) and (3). However, the frame-fixing pa-
rameter I" leads to essentially different result: The imag-
inary part of frequency becomes positive Imw(k) > 0
first for ripplons with the same value of the wave vector,
as in Eq.(3), but the ripplon frequency is now w = 0
and its group velocity is Vgroup = dw/dk = 0. The crit-
ical ripplon is stationary in the reference frame of the
container, as a result the onset of instability is given by

1 1
§p1vf + Epgvg =+VoF . (10)

This criterion does not depend on relative velocities of
superfluids, but is determined by velocities of each of the
two superfluids with respect to the container (or to the
remnant normal component). Thus the instability can
occur even if two liquids have equal densities, p1 = pa,
and move with the same velocity, v1 = vy. This situa-
tion is very similar to the phenomenon of flapping flag in
wind, discussed by Rayleigh in terms of the KH instabi-
lity — the instability of the passive deformable membrane
between two distinct parallel streams having the same
density and the same velocity (see latest experiments in
Ref. [5]). In our case the role of the flag is played by the
interface, while the role of the flagpole which pins the
flag (and thus breaks the Galilean invariance) is played
by the container wall.

Note that in the limit of the vanishing pinning pa-
rameter I' — 0 the Eq.(10) does not coincide with the
classical equation (1) obtained when there is no pinning,
i.e. when T is exactly zero. Such difference between the
limit and exact cases is known in many area of physics.
In classical hydrodynamics the normal mode of inviscid
theory may not be the limit of a normal mode of viscous
theory [9]. Below we discuss this difference for the case
of KH instability in superfluids.
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3. KH instability and modified Landau crite-
rion. Let us first compare both results, with no pinning
(' = 0) and for vanishing pinning (I' — 0), with the
Landau criterion. According to Landau, a quasiparticle
is created by the moving superfluid if its velocity with
respect to the container wall (or with respect to the body
moving in superfluid) exceeds

E(p)

ULandau = mMin —— . (11)

Let us recall that the energy E(p) here is the quasi-
particle energy in the reference frame moving with the
superfluid vacuum. In our case there are two superfluids
moving with different velocities. That is why there is no
unique superfluid comoving frame, where E(p) can be
uniquely determined. Such frame appears only in par-
ticular cases, when either v; = wvs, or if instead of the
interface one considers the free surface of a single liquid
(i.e. if po = 0). In these particular cases the Landau
criterion in the form of Eq.(11) must work. The energy
spectrum of the ripplons on the interface between two
stationary fluids (or on the surface of the single liquid)
is given by Eq.(9) with vy = vy =T =0:

w(k) 1 F+kio

= 12
k2 p1+ p2 k (12)
This gives the following Landau critical velocity:
2
5 . wi(k) 2
= — = VFo . 13
ULandau min k2 p1 + P2 o ( )

This coincides with the Eq.(10) if v1 = vs, or if po = 0.
But this does not coincide with the classical KH result:
the latter is obtained at I' = 0 when the interaction with
the reference frame of the container is lost, and thus the
Landau criterion is not applicable.

In the general case, when neither of the two condi-
tions (v1 = wva, or pa = 0) fulfils, the Landau criterion
must be reformulated: the instability occurs, when the
frequency of the surface mode in the frame of the con-
tainer crosses zero for the first time: w(k;vy,v2) = 0.
Inspection of Eq.(9) with I' = 0 shows that for k = ko
the spectrum with negative square root touches zero just
when the treshold (10) is reached. Thus the Landau cri-
terion in its general formulation coincides with the crite-
rion of instability obtained for the case of nonzero fric-
tion force. As distinct from the Landau criterion in the
form of (11) valid for a single superfluid velocity, where
it is enough to know the ripplon spectrum in the frame
where the superfluid (s) is (are) at rest, in the general
case one must calculate the ripplon spectrum w(k; v1, v2)
for the relatively moving superfluids.

Mucema B MIAT® Tom 75

BeII. 7-8 2002

4. Matching zero-pinning and vanishing-
pinning regimes. The difference in the result for
onset of KH instability in the two regimes — with I' = 0
and with I # 0 — disappears only in the case when two
superfluids move in such a way that in the reference
frame of container the combination piv; + pavs = 0. In
this arrangement, according to Eq.(4), the frequency of
the ripplon created by classical KH instability is zero
in the container frame. Thus at this special condition
the two criteria, zero pinning (1) and vanishing pinning
(10), must coincide; and they really do.

If piv1 + pavs # 0, the crossover between the zero
pinning regime and the regime of small pinning oc-
curs by varying the observation time. Let us consider
this on the example of the experimental set-up [7] with
the vortex-free B-phase and the vortex-full A-phase in
the rotating vessel: In the container frame one has
vi =vVga =0, vo = vgg = —Q x r; the densities of two
liquids, *He-A and 3He-B, are the same with high accu-
racy: pa = pp = p. In the non-zero pinning regime the
instability occurs at the boundary of the vessel, where
the velocity of the *He-B is maximal, when this maximal
velocity reaches the value:

2 1
'Uf = ;\/ Fo = 5”}2(}1 = 2’U%andau : (14)

This velocity is by v/2 smaller than that given by clas-
sical KH equation (1) for the zero-pinning regime. On
the other hand it is by V2 larger than the Landau crite-
rion in the form of Eq.(11), but coincides with Landau
criterion properly formulated for two superfluids.

From Eq.(8) it follows that slightly above this tresh-
old the increment of the exponential growth of the inter-
face perturbation is

Im w(ko) = 2p v

—1), at vgp — v, <K Ve -
(15)

In the vanishing pinning limit I" — 0 the increment be-
comes small and the discussed instability of the surface
has no time for development if the observation time is
short enough. It will start only at higher velocity of
rotation when the classical treshold of KH instability,
vkg in Eq.(1), is reached. Thus, experimental results
in this limit would depend on the observation time —
the time one waits for the interface to be coupled to the
laboratory frame and for the instability to develop. For
sufficiently short time one will measure the classical KH
criterion (1), while for the sufficiently long observation
time the modified KH criterion (14) will be observed.

5. Thermodynamic instability. Let us now con-
sider the case of nonzero T', when each of the two liquids
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contain superfluid and normal components. In this case
the analysis requires the 2 x 2-fluid hydrodynamics. This
appears to be rather complicated problem, taking into
account that in some cases the additional degrees of free-
dom related to the interface itself must be also added.
The two-fluid hydrodynamics has been used for investi-
gation of the instability of the free surface of superfluid
“He by the relative motion of the normal component of
the liquid with respect to the superfluid one [10]. We
avoid all these complications assuming that the visco-
sity of the normal components of both liquids is high,
as it actually happens in superfluid 3He. In this high-
viscosity limit we can neglect the dynamics of the normal
components, which is thus fixed by the container walls.
Then the problem is reduced to the problem of the ther-
modynamic instability of the superflow in the presence
of the interface.

We start with the following initial non-dissipative
state corresponding to the thermal equilibrium in the
presence of the interface and superflows. In thermal
equilibrium the normal component must be at rest in
the container frame, v,; = v,2 = 0, while the superflu-
ids can move along the interface with velocities v and
v,2 (here the velocities are in the frame of the container).

The onset of instability can be found from free-
energy consideration: When the free energy of static
perturbations of the interface becomes negative in the
frame of the container, the initial state becomes ther-
modynamically unstable. The free-energy functional for
the perturbations of the interface in the reference frame
of the container is determined by ‘gravity’, surface ten-
sion, and perturbations v;; = V®; and v, = V&, of
the velocity field caused by deformation of the interface:

1

F{¢} = 2 /d:v (F(2 +0(8:¢)* +

¢ , o ,
+ / dzps1in®t, 0%, + / dzpszikf;mfz). (16)
—co ¢

For generality we discuss anisotropic superfluids, whose
superfluid densities are tensors (this occurs in *He-A).
The velocity perturbation fields 7,5, = V®, obeying the
continuity equations 8;(p*%,,) = 0, have the following
form:
®,(z,z < 0) = A;e¥17 cosk, a7
®y(z, 2 > 0) = Aze *2% coskz,
pslzk% = p.«:lzk2 ’ p32zk§ = ps2zk2- (18)

The connection between the deformation of the surface,
{(z) = asinkz, and the velocity perturbations follow
from the boundary conditions.

Because of large viscosity of the normal component
it is clamped by the boundaries of the vessel. Then from
the requirement that the mass and the heat currents are
conserved across the wall, one obtains that the super-
fluid velocity in the direction normal to the wall must
be zero: vs - n = vg - n = 0. This gives the following
boundary conditions for perturbations:

62‘}1 = ’Uﬂawc, 6z<I>2 = ’Uszawc . (19)

Substituting this to the free-energy functional (16), one
obtains the quadratic form of the free energy of the sur-
face modes

Fieh =3 Y16 x
k

X (F + k20_ -k (\/pszlpszlvzl + \/psz2psz27)§2)) (20)

This energy becomes negative for the first time for the
mode with kg = (F/o)'/? when

1
5 (\/pszlpszlv§1 + \/p3$2psz2vg2) =vVoF. (21)

This is the criterion (10) for the non-zero pinning regime
extended to finite temperatures. Eq.(21) transforms to
Eq.(10) when T" — 0: The normal components of the
liquids disappear and one has pg;1 = ps;1 = p1 and
Psz2 = Psz2 = P2-

6. Nonlinear stage of instability. Eq.(21) is in
excelent agreement with the onset of the surface insta-
bility measured in experiment [7]. The onset of insta-
bility is marked by the appearance of the vortex lines
in *He-B which are monitored in NMR measurements.
This demonstrates that vortices appear in the nonlinear
stage of this KH instability.

The precise mechanism of the vortex formation is not
yet known. One may guess that the A-phase vorticity
is pushed by the Magnus force towards the vortex-free
B-phase region [11]. When the potential well for vor-
tices is formed by the corrugation of the interface (see
Figure), the vortices are pushed there and enhance fur-
ther the growth of the potential well, until it forms the
droplet of the A-phase filled by vorticity. The vortex-full
droplet propagates to the bulk B-phase where it relaxes
to the singular vortex lines of 3He-B.

Under the conditions of the experiment the nucle-
ation of vortices leads to decrease of the B-phase veloc-
ity below the instability threshold, and the vortex for-
mation is stopped. That is why one may expect that the
vortex-full droplet is nucleated during the development
of the instability from a single seed. The size of the
seed is about one-half of the wavelength A\g = 27/ko of
the perturbation. The number of the created vortices is
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S5

Possible scenario of vortex formation by Kelvin-
Helmholtz instability of the AB interface

found from the circulation of superfluid velocity carried
by the piece of the vortex sheet of size Ag/2, which is de-
termined by the jump of superfluid velocity across the
sheet: kK = |vsB — Vs4|Ao/2. Dividing this by the circu-
lation quantum kg of the created B-phase vortices one
obtains the number of vortices produced as the result of
the growth of one segment of the perturbation:
~ vc/\O

N=1
Ko 2/60

(22)

It is about 10 vortices per event under condition of the
experiment, which is in a good agreement with the mea-
sured number of vortices created per event [7]. This is
in favour of the droplet mechanism of vortex formation.

Probably, the experiments on KH instability in su-
perluids will allow to solve the similar problem of the
non-linear stage of instability in ordinary liquids (see,
for example, Ref. [12]).

The vortex formation by surface instability is rather
generic phenomenon. This mechanism has been dis-
cussed for vortex formation in the laser manipulated
Bose gases [13, 14]. It can be applicable to different
kinds of interfaces, and under very different physical
conditions. In particular, vortices can be generated at
the second order phase boundary between the normal
and the superfluid phases [15]. Such an interface natu-
rally appears at the rapid phase transition into the su-
perfluid state [16]. The instability of the free surface
of superfluid under the relative flow of the normal and
Mucema B MIAT® Tom 75
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superfluid components of the same liquid has been re-
cently reexamined by Korshunov [17]. He also obtained
two criteria of instability: for zero and nonzero values
of the viscosity of the normal component of the liquid.
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