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Contribution of the #%y and 7+ intermediate states to the vacuum
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Using new experimental data, we calculate the contribution to the anomalous magnetic moment of the muon
from the 7%y and 7y intermediate states in the vacuum polarization with high precision taking into account
the correction for using the trapezoidal rule: a,(7%y) + a,(7y) = (53.1 £ 1.5) - 10~''. We also find the small

contribution from ete~ 7%, ete 7 and p*pu~7° intermediate states equal to 0.5 - 1071,

PACS: 13.40.Em, 13.65.+i, 14.60.Ef

New experimental data [1—3] allows to calculate con- i (@)
tribution to the anomalous magnetic moment of the 150 -
muon a, = (g, —2)/2 from the 7%y and 7y inter- i
mediate states in the vacuum polarization with high -
precision. We have also found the contribution from 100 -
ete 70, ete nand ptpu—7° intermediate states. -
The contribution to a, from the arbitrary interme- 50 B
diate state X (hadrons, hadrons++, etc.) in the vacuum -
polarization can be obtained via the dispersion integral -
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Vvi—-a Vs in MeV (SND experimental data and fit). b)
5 5 Comparison of the theoretical formulas for o(ete™ —
r= 1-4/1—-4m,*/s o= 4mu‘ 7%y). Eq. (6) is shown with the solid line, point-like
1—4m M2 / s s model prediction is shown with the dashed line

3 a
2\
K(s <4m,) = pe) (16(a —2)In 1 2a(8 — a)— Evaluating integral (1) with the trapezoidal rule for
the experimental data from SND [1, 2], see Figure a, we
—8(a® — 8a + 8)—arctan( al— D ) found the contribution of 7°7:

a —

alrop(n®y) = (46.2 + 0.6 £ 1.3) - 1011,
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The first error is statistical, the second is systema-
tic. Note that the contribution from the ¢ region
(970 MeV < /s < 1039 MeV) is 0.7 - 10711,

At our level of precision it is necessary to take into
account the error of trapezoidal rule. The point is that
using trapezoidal rule for an exact value R(s) we calcu-
late not the integral, but the sum. So there is a problem
to remove error of trapezoidal rule. In our case we use
three SND fits for R(s) from [1] based on vector domi-
nance model [4], see Figure, for experimental data in the
energy region 600 MeV < /s < 970 MeV.

We construct new small quantity which is the cor-
rection for the error of trapezoidal rule

am,\2 [N ds
Aau(wo'y,El,EN):(?)—;) /31 — K (s)R(s)—

le(sm)R(s,-ﬂ) L KERE) |

2
811 s

where E; are experimental energies, F; =600MeV,
En =970MeV, s; = E2, R(s;) are the SND fits values.
We get

Aa,(7%y,600 MeV, 970 MeV, fit) = —1.5- 101, (4)

This result varies less than at 1% for different fits. Note
that statistical error is also negligible (0.01 -10~!!). So
we neglect errors in (4), add it to (2) and get the result

au(ﬂ'ofy) =(44.7+£0.6+£1.3) - 1011, 5
5
600 MeV < /s < 1039 MeV.

The point is that values of both two items in (3),
calculated using fit, have non-negligible model error.
The contribution a,(7%y,600 MeV,970 MeV) calcu-
lated using SND fits differs at ~ 0.4 - 10~ ! from fit to
fit. But the difference Aa,(7%y, E1, En) has negligible
model error due to the inequality Aa, (7%, E1, En) <
< a,(n%y, E1, En), though relative model error is of the
same order.

For the energy region /s < 600 MeV we use theore-
tical formula for the cross-section:

tem = 7ly) =

e Sl ()’

3 s (1 ~ s/mg)z ;6)

where f2 = (m/m3,)Tro_,,, = 107! /MeV? according
to [5]. Eq. (6) has been written in the approximation

r,=T,=0, m,—m,=0. (7)

The v+ — 7%y amplitude is normalized on the 7% — vy
one at s = 0. The result is

au(m®y)=13-107", /5 <600 MeV. (8)
Note that the region /s < 2m,, gives the negligible con-
tribution 2 - 10713,

We neglect the small errors dealing with the experi-
mental error in the width I'zo_,.., (7%) and the approxi-
mation (7) (1.5%).

The Eq. (6) agrees with the data in the energy region
+/8 < T00MeV, at higher energies the approximation (7)
does not work carefully, see Figure b.

If we use the point-like model, as in [6], we will get

Eq. (6) without factor (1 -3/ mﬁ,) 2. This formula
predicts the contribution from low energies several times
less than (8), see also Figure b.

Treating the data from CMD-2 and SND [2, 3] in the
same way and combining the results, we get contribution

of ny:

au(ny) = (1.0£0.2£0.2) - 10712, o
9
720 MeV < /5 < 1040 MeV.

Note that correction for the trapezoidal rule result is
-0.3-10711,

According to the quark model (and the model of vec-
tor dominance also), the energy region /s < 720 MeV is
dominated by the p-resonance, hence o(eTe™ — ny) =
= g(ete” — p = n7). So we change Eq. (6) according
to this fact, take into account the p width and get the
small contribution:

au(my) =0.1-1071, /s < 720 MeV, (10)

Summing (5), (8), (9) and (10), we can write
au (™) +au(ny) = (63.1£ 0.6 £1.4)-10 1, (11)

where statistical and systematic errors are separately
added in quadrature. In Table we present our results
with statistical and systematic errors added in quadra-
ture. Comparing Eq. (11) with the analogous calcula-
tion in [6] (see Table), one can see that our result is 23%
more and the error is 2.5 times less. Note that increasing
the result is caused mainly by p and w interference in
70y channel, which wasn’t taken into account in previ-
ous works, where the Breit-Wigner formula for the cross
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Contribution to a, - 1011

State Our value Ref. [6]

w0y 46.0+ 1.4 37+3
ny 7.1+0.3 6.1+1.4

70y + ny 53.1+ 1.5 43 + 4
hadrons—++, total 95.7 £ 2.1 93 £ 11

section was used. The contribution (11) accounts for
133% of the projected error of the E821 experiment at
Brookhaven National Laboratory (40 - 10~'1) or 35% of
the reached accuracy (151 - 1011 [7]).

We can also take into account the intermediate state
w9t e, using the obvious relation

oglete = mlete,s) = (12)

Vs—m o
2 dm _
= ; / Wrﬁy*—m*'e_ (m)a(e+e — 707*7 s, m)v
2me

where m is the invariant mass of the eTe™ system,
T usere- (m) = (1/2)afem(1 - 7/3),
Be = /1 —4m2/m2?, o(ete” — n0yx,s,m) =
= (p(m)/p(0)) o(ee™ = n%,5),

p(m)=(V3/2)y/ (1= (mpo +m)?/5) (1~ (mq0 —m)?/s)

is the momentum of y* in s.c.m.
In the same way we can calculate a,(p*p~ 7°) and
a,(ete™n). The result is

a(ete ) + a,(utu ) + au(ete ) =
= (0.4 + 0.026 + 0.057) - 101 =0.5-10"11. (13)

Note that if m 2> m, we have the effect of the excita-
tion of resonances in the reaction ete™ — 7°(p, w) —
— n%te~. However this effect increases the final result
(13) less than by 10% because of the factor (p(m)/p(0))3,
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which suppresses the high m. So we ignore this correc-
tion. We also neglect a, (utp—n) =2-10714.

As it was noted in [6] and [8], it is necessary to take
into account also

ay (hadrons + 7, rest) = a, (777 y)+

+a,(7°7%y) + a, (hadrons + v, s > 1.2 GeV?).
u w

We take a,(rtmy) = (38.6 £ 1.0) - 10~ from
[8] (see also [6]), a,(n°7®y) + a,(hadrons + v, s >
> 1.2 GeV?) = (4 +£1)-10~" from [6]. Adding this
to (11), we get

a,(hadrons + v, total) = (95.7+£2.1)- 1071, (14)

The contribution (14) accounts for 239% of the pro-
jected error of the E821 experiment or 63% of the
reached accuracy.

In fact, the errors in (11) and (14) are negligible for
any imaginable (g — 2), measurement in near future.
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