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One-dimensional quantum chaos: Explicitly solvable cases
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We present quantum graphs with remarkably regular spectral characteristics. We call them reqular quan-
tum graphs. Although regular quantum graphs are strongly chaotic in the classical limit, their quantum spectra
are explicitly solvable in terms of periodic orbits. We present analytical solutions for the spectrum of regular
quantum graphs in the form of explicit and exact periodic orbit expansions for each individual energy level.

PACS: 05.45.Mt, 03.65.Sq

Consider a point particle moving along a network of
bonds and vertices. Schematically, the network is repre-
sented by a graph T' (see Fig.1 for an example), which
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Fig.1. A generic (quantum) graph with five vertices
and six bonds

consists of Ng bonds and Ny vertices. The vertices are
denoted by V;; a bond connecting vertices 7 and j is de-
noted by B;;. The set of bonds and vertices of I defines
its geometry. We define a set of the bond potentials,
U;j(k,z), where x and k are correspondingly the coordi-
nate and the momentum of the particle on the bond B;;.
The vertices of I' may be equipped with §-sources, etc.
The geometry of I' does not uniquely define the dynam-
ics of a particle on I'. In fact, since for any given geom-
etry the graph may be “dressed” with arbitrary bond
and vertex potentials, there exist infinitely many “dy-
namical realizations” of I'. We call the set of bond and
vertex potentials the “dynamical dressing” of the graph.
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Previously [1-5], mainly the “bare-bond” graphs were
studied, where the particle moves freely on the bonds.

In this paper we focus on cases that have no turn-
ing points on the bonds, i.e. the energy of the particle
is larger than all of the bond potentials, E > U;;(z, k),
z € B;;. A simple way to implement this condition is
to require that the system is scaling [6—10]. This im-
plies U;;(z,k) = Xij(z) k%, where the functions \;;(z)
are bounded for all z. In this paper we consider only
simple cases where the functions A;;(z) are z indepen-
dent constants,

Uij(:l,‘,k) = Aijkz. (1)

This is very similar to moving on a free graph except
for substituting the bond lengths with the action lengths

Sy = Bij Lij, (2)

where L;; is the length of the bond B;;, and 8;; =
= /1 — Aij. The scaling assumption (1) is not an over-
simplification of the problem. Plenty of room is left for
very interesting phenomena. Moreover, scaling quantum
systems of this kind are the analogues of certain electro-
magnetic ray-splitting systems which have already been
investigated experimentally in the laboratory [7—9].
For all but the most trivial graphs, i.e. linear or cir-
cular graphs with vanishing bond and vertex potentials,
the classical motion on a graph, independently of any
particular dressing, is fully chaotic with positive topo-
logical entropy [11]. This means that the number of
possible periodic orbits traced by the particle increases
exponentially with their lengths. If no dynamical turn-
ing points are present, the topological entropy is inde-
pendent of the dynamical dressing and depends only on
the geometry of the graph. Since at any vertex differ-
ent from a “dead-end” vertex the classical particle has
to choose randomly between several possibilities (reflec-
tion, transmission, branching), the particle’s dynamical
evolution resembles a stochastic, Markovian process.
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Given their classical chaoticity it is surprising that
the density of states of quantum graphs can be ob-
tained exactly in terms of periodic orbit expansion series
[1,3-5]. Furthermore, quantum graphs are considerably
“more integrable” than all the previously known exactly
solvable quantum systems. For example we will show be-
low that for a certain class of quantum graphs — we call
them regular quantum graphs — there exists an explicit
and exact periodic orbit expansion for every quantum
energy level. In other words, although the classical limit
of regular quantum graphs is chaotic, each individual
level of their spectra can be obtained exactly and ex-
plicitly via an analytical formula containing an explicit
sum over the periodic orbits of the graph. To the au-
thors’ knowledge this is the first time that the spectrum
of a quantum chaotic system is obtained both ezactly
and explicitly.

The formal definition of regular quantum graphs is
based on the properties of the spectral equation [3—5]

det[1 — S(k)] = 0, (3)

where S(k) is the scattering matrix of the graph [3]. The
modulus of the complex function (3) is a trigonometric
polynomial of the form

cos(Sok — my0) — ®(k) = 0, (4)
where
®(k) =) a;cos(Sik — m;) (5)
and
So = %; /B RCEE (6)

is the total reduced action length of the graph I" and
the constant frequencies S; < Sy naturally emerge as
combinations of the reduced classical actions (2). Under
the scaling assumption, the coefficients a;, yo and -y; are
constants.

We now define regular quantum graphs. They satisfy

i
The motivation for this definition is the following: it

allows us to solve (4) formally for the momentum eigen-
values k,,

ko= = [n+p+]+
So

i{ arccos (®(kn)),
m — arccos (®(ky,)),

for n + p even

So for n 4+ p odd
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Fig.2. (a) Simple step potential, a basic problem in
one-dimensional quantum mechanics. Also shown are
examples of Newtonian N and non-Newtonian (NN)
periodic orbits used in the periodic orbit expansion
of its energy eigenvalues (see Text). (b) Three-vertex
hydra graph corresponding to the step potential above

where p is a fixed integer chosen such that k; is the first
non-negative solution of (4). Because of (7) the second
term of (8) assumes only values between u and w/Sy —u,
where 0 < u = arccos(a)/Sy < m/28Sp. Thus, for regular
graphs, the points

k 7r n+v),n=12...

nzs_o( y Y=EHR+Y (9)

are guaranteed not to be roots of (3) and serve as sepa-
rators between roots number n and n+1. Obviously the
function (9) reflects the average behavior of the levels of
the momentum. It is simply the inverted average stair-
case, ky = N(k)~!. Geometrically the points (9) are
the intersection points between the staircase function,
N(k) =3, 0(k — k), and the average staircase N (k)
resulting in the crossing condition

N(kn) = N(kn) = n. (10)

The crossing condition (10) is illustrated in Fig.3.

The existence of the separating points (9) implies
that the roots (8) are confined to the “root zones”,
or “root intervals” I, = [k, 1,kn), n = 1,2,.... If
a < C < 1 holds (C constant), equation (8) implies
the existence of finite-width root-free “forbidden zones”

8*
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Fig.3. The staircase function N(k) and the average
staircase N (k). For the regular graphs the average
staircase intersects every “stair” of the N(k) graph,
with the separators (9) showing as the intersection
points N (k,) = N (k)

R, = (kn — u,k, + u) surrounding every separating
point k,, where no roots of (3) can be found. The
roots of (3) can only be found in the “allowed zones”
Zy = [kn—1 + u, k, — u], which are subsets of the root
intervals I, = [kn_1,k,]. For C — 1 the width of the
forbidden regions shrinks, u — 0, and the allowed zones
occupy the whole interval, Z,, — I,.

Since Sp is the largest action in (4) and (5), it can
be shown [12] that k,, is the only root in Z,,. Therefore
there is exactly one root k,, inside of Z,, C I,,, and this
root is bounded away from the separating points k,_;
and k, by a finite interval of length 2u.

The existence of the separating points (9) and the
root-free zones R,, are the key for obtaining an explicit
and exact periodic orbit expansion for every root of (3).
The starting point for obtaining the explicit expressions
is the exact periodic orbit expansion for the density of
states, p(k) = >_52, 6 (k — k;). As shown in [1,3-5] it
can be written explicitly as

- 1 0 .- v ivSlk
p(k) = k)—}-;Re;Sp';lApe ok (11)

Here p(k) is the average density of states, v is the repeti-
tion index, and Sg, A, are correspondingly the reduced
action and the weight factor of the prime periodic or-
bit labeled by p. In the scaling case, Sg and A, are
k-independent constants [12]. Multiplying the density
of states by k and integrating from k,_; to k, yields
the value of the root contained between these separating

points,

kn

/ p(k) kdk—_] 2

kn—1

Dkdk =k, (12)

Performing the same procedure using the series expan-
sion representation (11) and the crossing condition (10),
we obtain

T

ky = p—
So

2
T

N|'§§

o0
3 @ E (guwp) sin(mvwpn), (13)
p Ppv=1
where w, = Sp/So, and the A,’s are assumed to be real
(no vertex potentials).

Since all of the quantities on the right-hand side of
(13) are known, this formula provides an explicit rep-
resentation of the roots k, of the spectral equation (3)
in terms of the geometric and dynamical characteristics
of the graph. To our knowledge, this is the first time
that the energy levels of a chaotic system are expressed
explicitly in terms of a periodic orbit expansion. Previ-
ously, explicit formulae for individual energy levels were
known only for integrable systems. In the context of
periodic orbit theory, the energy levels of integrable sys-
tems are given by the Einstein-Brillouin-Keller (EBK)
formula [11]. However, apart from a few exceptional
cases [13] EBK quantization is only of semiclassical ac-
curacy.

The difference between (11) and (13) is profound.
The density of states (11) allows the computation of
spectral points only indirectly as the singularities of (11).
Formula (13), on the other hand, allows the computa-
tion of every quantum level individually, explicitly and
ezactly in terms of classical parameters.

In order to demonstrate that the class of regular
quantum graphs is not empty we present an explicit
example: the one-dimensional scaled step potential with
Vo = AE. A sketch of this potential is shown in Fig.3.
Physically this potential is realized, e.g., by a rectangu-
lar microwave cavity partially loaded with a dielectric
substance [7—9]. The scaling step potential is equivalent
to the scaling three-vertex linear graph shown in Fig.2b.
It has two bonds Ly = b and Ly = 5(1 — b); the single
scaling constant 3 (see (2)) is given by 8 = +/1 — A. The
spectral equation is given by

|det [1 — S(k)]| = sin(Lk) — rsin[(Ly — L2) k] =0,

(14)

where L = Ly + Ly, and » = (1 — 3)/(1 + B) is the
reflection coefficient at the vertex V5 between the two
bonds. It defines the eigenvalues k,, only implicitly and
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is usually solved by graphical or numerical methods. Ap-
plication of (13), however, solves (14) explicitly in terms
of periodic orbits such as the ones shown in Fig.2. In
order to apply (14) we need the coeflicients A,. They
are given by [10, 12]

A, = (—1)xP)po(p) (1 _ p2)7(2)/2, (15)

where 7 is the reflection coefficient at the middle vertex
and o(p) and 7(p) are correspondingly the number of
the reflections and the transmissions through it. Since
the reflection coefficient may be positive or negative de-
pending on whether the particle scatters from the right
or from the left, the factor (—1)X(?) is needed to keep
track of how many times it appears with a minus sign,
including the sign changes due to the wall (z = 0 and
z = 1) reflections.

In order to illustrate the convergence of (13) we com-
puted ki1, k1o and kigo of the scaling step potential in-
cluding periodic orbits of increasing binary length gq.
For the parameters of the potential we chose b = 0.3
(see Fig.2) and A = 1/2. Fig.4 shows the relative er-
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Fig.4. Relative error €@ = |k'0 — g{eect)|/glexect)
of (13) (see text) by including periodic orbits up to
length ¢g. The three curves shown correspond to ki,

k1o and k100 as indicated in the figure

ror €@ = |k{? — kexact|/kexact for p = 1,10,100 and g
ranging from 1 to 150. We see that even for small ¢ the
relative error is very small, decreasing further for large
q as a power-law in q. The power of convergence ap-
pears to be the same for all three k£ and is close to —2.
The convergence with ¢ is an important result. It indi-
cates that although (13) is only conditionally convergent
it (i) converges to the correct result and (ii) is not just
asymptotically convergent, but keeps converging when
more and more periodic orbits are included.
Additional examples of regular quantum graphs are
provided by all linear and circular quantum graphs with
at most two bonds per vertex, independently of the num-
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ber of vertices. In other words, for any simply connected
quantum graph and any dynamical dressing there al-
ways exists a set of scaling constants \;; of finite mea-
sure such that the regularity condition (7) is fulfilled.
Well-known particular cases of these simply connected
quantum graphs are the “Manhattan potentials”, which
are obvious generalizations of the simple step potential
shown in Fig.2a to arbitrarily many steps inside of the
well, and linear chain graphs with scaling § function po-
tentials at the vertices.

It should be emphasized that the “inverse staircase
expansion” (13) is not just a curious finding, valid for
some simple 1D systems such as quantum graphs. Simi-
lar explicit series may be obtained for more complicated
higher dimensional systems when the following two key
ingredients are available. The first ingredient is the ex-
act series expansion of the density of states (11), which
has already been established for other classically chaotic
systems such as, e.g., quantum billiards [14]. The sec-
ond ingredient is a (piercing) average staircase function
N (k) or the inverted staircase function k, which inter-
sects every stair of the staircase, N(k,) = N(k,) = n,
n = 1,2,.... The intersection points k, then serve as
the separators for the possible root locations, and the
procedure outlined in the text can be used to find the
periodic orbit expansions for individual roots of the sys-
tem at hand. In most cases, of course, it is highly non-
trivial to obtain these two necessary ingredients. The
quantum graphs themselves are an excellent illustration
of this point. While the expansion (11) is valid for all
quantum graphs, it is the crossing condition (10) that
is violated when the inequality (7) brakes down. The
regular graphs are precisely those for which the line
N(k) = Sok/m + v satisfies (10) and allows the appli-
cation of the analytical procedure that resulted in the
explicit formula (13) for the representation and compu-
tation of individual eigenvalues k.
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