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We present a novel approach to solve initial-boundary value problems on the segment and on the half line
for soliton equations. Our method is illustrated by solving a prototype, and widely applicable, dispersive soliton
equation: the celebrated nonlinear Schroedinger equation. It is well-known that the basic difficulty associated
with boundaries is that some coefficients of the evolution equation of the (z-) scattering matrix S(k,t) depend
on unknown boundary data. In this paper we overcome this difficulty by expressing the unknown boundary
data in terms of elements of the scattering matrix itself, so obtaining a nonlinear integro — differential evolu-
tion equation for S(k,t). We also sketch an alternative approach, in the semiline case, based on a nonlinear
equation for S(k,t) which does not contain unknown boundary data; in this way, the “linearizable” boundary
value problems correspond to the cases in which S(k,t) can be found by solving a linear Riemann - Hilbert

problem.

PACS: 02.60.Lj, 03.40.Kf

1. Initial Boundary Value (IBV) problems for partial
differential equations play an important role in applica-
tions to Physics and, in general, to the Natural Sciences.

Since the discovery of the inverse scattering (spec-
tral) transform method to solve the IBV problem on
the infinite line with vanishing boundary conditions for
a class of distinguished nonlinear evolution equations,
like the Korteweg de Vries (KdV), nonlinear Schrédinger
(NLS) and sine Gordon (SG) equations (see, f.i., [1]),
several attempts have been made to extend this method
to the case of more complicated IBV problems, in which
Dirichelet and/or Neumann boundary conditions are
prescribed on the semi — infinite line or on the segment.
It is well-known that the basic difficulty associated with
these problems is that the evolution equation of the tra-
ditional z — scattering matrix S(k, t), as given by the Lax
equations, cannot be integrated in most of the cases be-
cause its coefficients depend on unknown boundary data.

Different approaches to the study of IBV problems
for soliton equations have been developed during the
last few years. In [2], an “elbow scattering” in the
(z,t)- plane has been introduced to deal with the semi-
line problem for KdV, leading to a Gel’fand — Levitan —
Marchenko formulation. In [3, 4] a different approach,
based on a simultaneous x—t-spectral transform, has
been introduced and rigorously developed [5, 6] to solve
IBV problems for soliton equations on the semiline. It
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allows one for a rigorous asymptotics [7] and captures
in a natural way the known cases of linearizable bound-
aries. In the case in which the Dirichelet condition
q(0, ) is given for the semiline problem for NLS, the un-
known boundary g (0, t) is obtained through a nonlinear
Volterra equation, whose solution exists without a small
norm assumption [5]. This approach has also proven to
be useful to treat linear equations on arbitrary convex
polygonal domains [8-10].

In some distinguished cases of soliton equations cor-
responding to singular dispersion relations, like the stim-
ulated Raman scattering (SRS) equations and the SG
equation in light cone coordinates, the evolution equa-
tion of the scattering matrix does not contain unknown
boundary data. The SG equation on the semiline has
been treated using the z—t-spectral transform [3, 6]; the
SRS and the SG equations on the semiline have also been
treated using a more traditional z-transform method re-
spectively in [11] and in [12]; the z-spectral data used in
this last approach satisfy a nonlinear evolution equation
of Riccati type.

We finally remark that IBV problems for C-
integrable equations have also been considered [13].
In particular, for the Burgers equation, the problem
reduces to that of solving a nonlinear Volterra equation.

In this paper we present a novel approach to the solu-
tion of IBV problems on the segment and on the half line
for soliton equations. In our approach we overcome the
difficulty associated with unknown boundaries using the



542 A. Degasperis, S. V. Manakov, P. M. Santini

analyticity properties of the spectral matrix, which al-
low one to express the unknown boundary data in terms
of elements of the scattering matrix itself, so obtaining a
closed nonlinear integro-differential evolution equation
of novel type for the spectral matrix S(k,t). The ap-
proach is illustrated on the prototype example of the
NLS equation

iqt + Az + C|Q|2q = 01 q= q(-’ﬂ, t)7 (1)

where ¢ is an arbitrary real parameter, which describes
the amplitude modulation of a wave packet in a strongly
dispersive and weakly nonlinear medium, but applies as
well to most of the known examples of dispersive soli-
ton equations in 1 + 1 dimensions, like the KdV and the
modified KdV equations. When applied to the SG equa-
tion in light cone coordinates, the spectral matrix used
in our approach satisfies a linear evolution equation.

For the NLS equation (1) we consider the following
basic IBV problems.

The NLS equation on the segment. We look for
the solution g(z,t) of the NLS equation (1) in the closed
domain 0 < ¢ < L, 0 < t < T, satisfying the initial
condition ¢(z,0) = u(z) and one of the following three
boundary conditions:

Q(Oat) = UO(t)a Q(Lat) = UL(t)a (2)

2:(0,t) = wo(t), gqz(L,t) =wr(t), (3)

Q(Oa t) + aogz (07 t) = fO(t)a q(L7 t) + anw(La t) = fL(t)'
(4)

where ag,ay, are arbitrary real constants.

The problems on the half line: z € [0, c0) and on the
line: ¢ € (—00,00) can obviously be viewed as limiting
cases of that on the segment.

2. To solve the above problems we make essential
use of the fact that the NLS equation (1) is the integra-
bility condition of the following system of linear 2 x 2
matrix equations (the well-known Lax pair) [14]:

a) ¥, = (ik(fg + Q)‘I’ 5)
b) ¥, = (2ik%03 + Q)¥ + ¥C

where o3 = diag(1

,—1), C is an arbitrary z-independent
matrix and
0 —cg(z

_ 1)
o= ( o, ), .
Q(.’I},t) =2kQ —i03Q, + iQ2¢73-

As in the tradition of the spectral transform method,
the Jost solutions ¥, (z,¢,k) and ¥_(z,¢,k) of (5) are
defined by the conditions:

T_(0,t,k) =1, (Lt k)=etto (7)

and the scattering matrix S(k,t) is introduced by the
relation:

T (z,t,k) = U_(z,t,k)S(k, t). 8)

It is well-known that the Jost solutions and the scat-
tering matrix have unit determinant; it is also well-
known that, with @ given by Eq.(6), they have the fol-
lowing structures:

(ZE k) < d)ﬂ:ll(k) —C’(/)j:21_(]:7) )
Yrg (k)  Yiyy(k) )’
_ 9)
S(k) = ( o(k) _cﬂ_(k)>.
B(k)  a(k)

It is standard to show that M := ¥ (z,t, k)e k=73
N := ¥ _(z,t,k)e %273 and S(k,t) are entire analytic
functions of k. The first column of N is analytic in the
lower half k plane (LHP) with asymptotics:

Nui(k) | 1+0(k1) (10)

Noa (k) a/2ik +O(k~?)
and grows exponentially like: e~2#20Q(k~!) in the up-
per half plane (UHP), combining both behaviors (power
decay and exponential oscillation) on the real axis. The
first column of M is analytic in the UHP with the as-
ymptotics (10) and grows exponentially in the LHP like:
e2k(L=2) O(k~1), combining both behaviors (power de-
cay and exponential oscillation) on the real axis. The
analyticity properties and the asymptotics of the sec-
ond columns follow from equations (9). The scattering
matrix S(k,t) = M(0,t, k) shares the analyticity prop-
erties of M and its asymptotics are written down below
in some detail for future use.

L
[
1+ — /da;|q|2 +0(k™2),  Imk >0,
a(k)=¢ 2k (11)
2kL ¢ - -3 .
e2thL( ik)? Dovr +0(k~2)), Imk < 0;
B(k) =
L o= By + O(k=2), Tmk > 0
2k ° (2ik)2"° ’ ’
= ) ) (12)
2kL(_ *
2l (— 5 kv CE =B +0(k™?)), Imk <0,
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where
L L
Bo = wo — cvo/d:1:|q|2 and OB = wr + cvg, /d:z:|q|2.
0 0

The Direct Problem is the mapping from the initial
condition ¢(z,0) = u(z) to the elements a(k,0),5(k,0)
of the scattering matrix at ¢ = 0.

The Inverse Problem is the mapping from the evo-
luted elements a(k,t),3(k,t) of the scattering matrix
(or, more precisely, from the evoluted spectral data) to
the NLS field g(z,t). This problem does not differ from
the case of NLS on the line and we refer to the classical
literature [14, 1] for details.

3. The intermediate step, the t-evolution of the scat-
tering data, is where our approach introduces some im-
portant novelties. Using equation (5b), one can show
that the time evolution of the scattering matrix S(k,t) =
¥, (0,t, k) is gouverned by the following matrix equation

St=2ik2[03, S+ Q(O,t, k)S — Se_ikL”Q(L,t, k)eikl’a"
(13)

which takes the following form, for the relevant compo-
nents:
ay(k) = cli(jvrl® — |vo[*)a(k) +

+ (2kvr, + iwg)e** L B(k) — (2kvo — o) B(K)],
ﬂt(k) = —4lk2ﬂ(k) + (2k’Uo + in)a(k) -

— (2kvg +iwg)e*™* P a(k)+ic(|vg|® + |vol*)B (k).

This system of equations depends on known as well as
unknown boundary data and cannot be used, as it is,
to obtain a(k,t) and B(k,t). This basic difficulty can
be simply overcome using the analytic properties of «, 8
and their asymptotic expansions (11), (12) which allow
one to express the unknown boundary data in terms of
known ones and «, 3, thus obtaining the desired closed
evolution equation. It is easy to show that the following
formula take place:

(14)

wo(®) = =Zuo(®) [ dblas (k1) - 1] +

™
—o0

+ % 7dk[kﬂ_(k,t) 4 wol®) _ v (t)

2 2

cos 2kL],

wi(t) = 2on(t) / oy (k) — 1)+ )

+ 4 / dklk cos2kLB_ (k,t) —
™

ivg (t ivr, (t
— ik sin 2k LA (k, t) + # cos 2kL — “’L2( )],

Iucema B AT Tom 74 BRIM.9-10 2001

™

wm=—3/dw4hm

vr(t) = _2 / dk[cos2kLB (k,t) — "

™

—isin2kLA_(k,t)],

where ai(k) (B+(k)) are the even and odd parts of
a(k) (B(k): ax(k) = (ak) + a(=k))/2, B:(k) =
(B(k) + B(—F)) /2.

Therefore the ¢ - evolution of the scattering data cor-
responding to the initial-boundary value problems (2),
(3) or (4) is given by the system of equations (14) (with
the initial conditions a(k,0) and 3(k,0) obtained from
the direct problem) in which the unknown boundary
data are replaced by expressions (15) or (16).

For example, the time evolution of S(k,t) for the
boundary condition (2) is given by equation (14) with
wo(t), wr (t) replaced by expressions (15) etc.

Of course, our method of solution applies also to the
linear Schroedinger equation. In analogy with this case,
it is possible to prove that the solutions a(k, t), 3(k,t) of
the above nonlinear integro-differential evolution equa-
tions exist unique. This is in full agreement with PDE
theory, in which the boundary values (2), (3) and (4) are
necessary and sufficient to obtain one and only one solu-
tion g(z,t) with given initial condition. It is interesting
to remark that, if we replaced not only the unknown
boundary conditions, but also the assigned ones by their
spectral representations, then the nonlinear evolutions
would loose uniqueness and the solutions would depend
on arbitrary functions of time (which could therefore be
interpreted as the “illegitimately suppressed” boundary
data).

The initial-boundary value problems for NLS on the
semiline z € [0, 00) are easily obtained from the above
treatment in the limit L — oo, assuming a sufficiently
fast vanishing at  — oo of the relevant fields and hence
setting vy, = wr, = fr=0.

In the semiline case the first columns of M(z,t, k)
and S(k,t) are analytic in the UHP. The asymptotics of
the scattering matrix read:

a(k) =1+ ﬁ dz|g/? + O(k™2), Imk >0,
0
1 1
B(k) = m’uo - W X (17

X (wo — cvofdm|q|2) +O(k~3), Imk > 0.
0
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The inverse problem is unchanged and the ¢-evolutions
of the scattering data, corresponding to our initial-
boundary value problems are given now by equation

S; = 2ik*[o3, S] + Q(0,t,k)S, (18)

which takes the following form for its relevant compo-
nents:

ay(k) = —clilvo|*a(k) + (2kvo — iiwo)B(K)],
Bi(k) = —4ik?B(k) + (2kvo + iwo)a(k) + iclvo|?B(k)
(19)

supplemented respectively by the following spectral rep-
resentations of the unknown boundary data:

wa(®) = ~Zuo(®) [ dblas (k1) = 1] +
+§ / dk[kﬂ_(k,t)+w°2(t)]; (20)
w() =~ [ g (ko) (21)
w(t) == [ dr. (i),
~o (22)

wo(t) = aiofo(t) + Wiao / dkfBy (k,t).

4. Here we describe, for the semiline case, an alter-
native approach. It is based on the equation:

(6*2““2“’3:';*1 (=k, t)[a1] + 2iazkos)S(k, t)ezikzt”s)t

= dke~2ik*tos G=1(_k ) x
x [a1Q(0, 1) + a2Q4(0, )] S (k, t)e2ik’tos (23)

where a1, as are arbitrary real parameters, which follows
directly from (18). If we assign the boundary condition

a1¢(0,t) + a2¢2(0,t) = f(¢) (24)

(which describes, due to the arbitrariness of the real pa-
rameters a,as, all the three IBV problems), equation
(23), together with the analyticity properties of the scat-
tering matrix, allows one to construct S(k,t) through a
nonlinear integral equation in both variables k and ¢.
The main advantage of this approach is that equation

(23) does not contain unknown boundary data; a discus-
sion of this approach is out of the scope of the present
paper and will be reported in a subsequent one.

Another advantage of this approach is that it cap-
tures in a natural way the known cases of linearizable
boundary conditions [15—-17], summarized by the equa-
tion: a1q(0,t) + a2q,(0,t) = 0. Indeed, in this case, the
right hand side of equation (23) is zero; therefore:

STk, t)[a1] + 2iazkas)S(k,t) = (25)

= e2*t9s (1 (_k, 0)[ar ] + 2iazkos]S(k,0)) e 2+ tos

and, using the analyticity properties of S(k,t), equation
(25) can be interpreted as a linear RH problem for the
columns of S(k,t). Assuming that, for simplicity, the
upper function J(k) = (a1 + 2iazk)a(k,0)a(—k,0) +
c(ar — 2iazk)B(k,0)3(—k,0) has no zeros for Imk > 0,
then the RH problem (25) can be expressed in terms of
the following system of integral equations:

a(k,t) 1 N dk! o an
( B(k,t) )+2_7ri_/ mv(k Je 4Rt
w1 .
ak',t) 0/’

y(k) = [(a1 + 2iask)a(k, 0)3(—k,0) —

— (a1 — 2ia2k)a(—k,0)ﬂ(k,0)] / J(=F), (27)

where

which allows one to construct S(k,t) from the initial
condition S(k,0) through a linear system of equations.
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