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Spectral functions of strongly correlated two-dimensional (2D) electron systems in solids are studied on
the assumption that these systems undergo a phase transition, called fermion condensation, whose character-
istic feature is flattening of the electron spectrum e(p). Unlike the previous models in the present study, the
decay of single-particle states is properly taken into account. Results of our calculations are shown to be in
qualitative agreement with ARPES data. The universal behavior of the ratio Im X(p,e,T)/T as a function of
z = ¢/T, uncovered in [3] for the single-particle states around the diagonal of the Brillouin zone, are found to
be reproduced reasonably well. However, in our model this behavior is destroyed in vicinities of the van Hove

points where the fermion condensate resides.
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The single-particle (SP) dynamics of Fermi systems
at near zero temperatures 1" is known to depend cru-
cially on the index v, that characterizes the imaginary
part of the mass operator, Im X(e — 0) ~ £”, the energy
€ being measured from the chemical potential . In ordi-
nary homogeneous Fermi liquids such as nuclear matter
and liquid *He, where the exclusion principle “leads the
dance”, the index v equals 2, and the Fermi liquid can
be treated as a gas of interacting “immortal” quasipar-
ticles, the cornerstone of standard Fermi liquid theory
(SFLT) [1]. After many successful years, SFLT is cur-
rently encountering serious difficulties in treating normal
states of 2D high-T, superconductors. The analysis of
ARPES data shows that even around the diagonals of
the Brillouin zone, the index v is unity [2, 3], while in
the immediate vicinity of the van Hove points (vHP),
the sharp ARPES peaks disappear altogether [4—6].

We propose that solution of this challenging prob-
lem is associated with fermion condensation [7—-17], a
novel phase transition that generates a domain C of dis-
persionless states, called the fermion condensate (FC),
whose energies €(p) coincide with p. As a rule, in
strongly correlated anisotropic electron systems of high-
T. superconductors, the FC occupies vicinities of the
vHP [8, 18], the region, where the Fermi liquid approach
just fails. States with the FC have been uncovered [7] as
unconventional solutions of equations of Landau theory
at T = 0. However, in dealing with spectral functions
of strongly correlated Fermi systems, the basic equation
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of the fermion condensation e¢(p € C;n) = p should be
rewritten as [18]

e+ 3(p,e=0n)=p, peC. (1)

Beyond the FC phase transition point, this equation
does determine a new momentum distribution n(p) dif-
fering from the conventional one nr(p) = 6(u — €(p)).
The degeneracy of the SP spectrum at 7' = 0, a salient
feature of the solution given by Eq. (1), is lifted by pair-
ing correlations which are ignored in writing this rela-
tion. In doing so, the BCS occupation numbers v2(p)
coincide with n(p) evaluated from Eq. (1) provided the
BCS coupling constant is rather small [13]. For this rea-
son, superfluid systems with and without the FC look
more alike than normal ones, since in normal states of
conventional Fermi liquids, the damping makes no dif-
ference, whereas in normal states of systems with the
FC, the damping becomes a real “weathermaker”. In-
deed, the relevant contribution to Im ¥ g(p,€) is given
by [19]

ImXg(p,e) ~ Z // dwdei F(e,w,e1,T) %

q,P1
X |F(p1Eaplaslaqaw;n”z:[mGR(p —q,€— LU) X
X ImGgr(-p1,—¢€1)ImGr(q — p1,w —€1) , (2)
where the factor

F(e,w,e1,T) = cosh (%) X

-1
X [cosh (%) cosh (a;_Tw) cosh (w;Tsl)] )
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IT|? is the absolute square of the scattering ampli-
tude, properly averaged over spin variables, and Gg
is the retarded Green function with Im Ggr(p,e) =
—y(p,e)lle — o(p,e) — s(p))* + ¥*(p,e)] ", where
o(p,e) = ReXg(p,e) — ReXg(p,e = 0) and s(p) =
€) + ReXgr(p,e =0) — p.

We restrict ourselves to temperatures 7' markedly
lower than the characteristic temperature T of destroy-
ing the FC that allows one to ignore the T-dependence
of 7, the fraction of the Brillouin zone occupied by the
FC. To simplify the problem, we replace the function
~v(p, €) by a set of functions of the single variable ¢, e.g.
in the FC region, v(p € C,¢) is reduced to yc(e). The
complementary region of momentum space, in which the
dispersion of the spectrum ¢(p) has a nonzero value, is
composed of two subregions. The first, adjacent to the
FC domain and henceforth denoted by T, is a transition
region, in which the same decay processes, as in the FC
region, are still kinematically allowed. The second sub-
region, denoted by M, is located around diagonals of the
Brillouin zone. Here some of these processes are either
kinematically forbidden or at least strongly suppressed.
Correspondingly, y(p € T,e) = yr(e),v(p € M,¢e) —
7 (€). To close the set of equations of the problem, the
amplitude I'(n) should somehow be specified. Bearing
in mind that 7 is small, we neglect the FC contribu-
tions to T, replacing it by I'(nr). In this article we
continue to examine a scenario of [18] when the fermion
condensation precedes the antiferromagnetic phase tran-
sition and employ the same amplitude I'(p, p1; nr) as in
[20, 18], T'(p, p1;nF) ~ [B% +K*(P—p1 — Q)?] !, where
Q = (m, 7), is taken.

We start with the case ¢ > T, and set T = 0 in
the integral (2), thus dropping all T-dependent contribu-
tions. First we evaluate yc(e — 0). In this case, (i) con-
tributions from processes involving only the FC states
prevail (see below), (ii) the quantity |T'(nz)|?> ~ 37* can
be factored out of the integral (2), and (iii) the quan-
tity s(p € C,T), which vanishes over the FC region at
T = 0, can be verified to remain small compared to lead-
ing terms in Eq. (2), and thus can be neglected. As a
result, the energy and momentum integrations in Eq. (2)
separate. Taking for certainty € > 0 and omitting nu-
merical factors, we are left with

Yo(e = 0) ~ (3)

€

w
~ B // Ac(e — w) Ao(—e1) Ac(w — &1) dw des,
00
where Ac(e) = ImnGr(p € C,e). To proceed, we in-
sert yc(e — 0) ~ € into the Kramers-Kronig rela-
tion to obtain oc(e — 0) ~ &”¢. We then substitute

vc and o¢ into Ag and find Ag(e — 0) ~ ¢7¢. Fi-
nally, upon inserting this result into Eq. (3), we ar-
rive at o = 1/2 [16]. More precisely, one obtains
vc(e = 0) ~ B~ (ne%e)'/? and

Gr(p € C,e = 0) ~ e ™/ 4yo(e = 0)] L ~

~ A B (nele) 2 @

This result can be shown to hold even if the momen-
tum dependence of the quantities yo(p,€) and oc(p,€)
is properly taken into account to ensure the correct mo-
mentum distribution n(p). We see that in the FC region,
the conventional structure of the Green function is de-
stroyed, the familiar pole being replaced by a branch
point at € = 0.

Now we are in position to discuss the impact of the
damping on the topological charge N of a system with
the FC, introduced by Volovik [8]. Recall, that in 2D
systems, this charge is given by the integral

N = f ﬂ G(PaEZiQ) alG_l(p,EZiQ) ) (5)
2me

L

taken along the contour L, embracing the Fermi line
in the 3D space (pz,py, Q). If one neglects the e-
dependence of X(p,e), then the FC Green function
Gp € Ce) = [e+ p— € — X(p,&)] ™" becomes 1/e,
and upon inserting this expression for G into the inte-
gral (5), one finds N = 1/2, implying that systems with
the FC form a separate class of normal Fermi liquids
[8]. What happens to the topological charge N, if the
energy dependence of the mass operator is incorporated
and G = 1/e is replaced by the Green function (4)? Af-
ter performing simple integration, we are again led to
the previous result N = 1/2 [8], in spite of the dramatic
alteration of the Green function itself that occurs in the
FC region.

In the transition region T, the decay into the FC
states is not kinematically forbidden. Accordingly,
y1(e = 0) ~ B~ (ne%e)'/?, while the function s(p € T)
already differs from zero. Requiring it to vanish at the
boundaries of the FC region along with its first deriv-
ative, one finds that in the region T, the conventional
structure of the Green function is recovered, but in the
vicinity of the FC domain, SP excitations appear to be
ill-defined, since the pole of G(p,¢) is located close to
the imaginary energy axis.

In the region M, dominant contributions to Im X g(¢)
come from a process associated with the generation of
three states: two from the FC region and one from the M
region. In this case, the formula for finding yn(e — 0)
reads
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ijc —€1 Ac(w 61)

P, 100
x [1 = 6(p)] Pc(p—p1) Am(p,e—w) dwder,  (6)

where Pc(q) = -, 0(p)0(p —q) and 8(p) =1ifpe C
and otherwise vanishes. It is seen that in this case,
the momentum and energy integrations do not separate.
However, one can take advantage of the fact that the
spectrum &y (p) = em(p) — i is proportional to (p — pr)
and introduce &v(p) as a new variable. Then after sim-
ple integration, we are led to the result v,y = 1 pos-
tulated in the model of a marginal Fermi liquid [21].
Evaluation of the 7n-dependence of relevant quantities
in the M region yields ym(e — 0) ~ 8 25'/%¢ and
om(e = 0) ~ B2 2¢n ¢|.

These results can be applied to the case e ~ T,
where according to Eq. (4), the leading term in the
FC Green function has the form Ggr(p € C,e) ~
e~¥"/4[yc(e,T)]~*. Upon inserting this expression into
Eq. (3) one finds that the damping vo(z,T), where
z = ¢/T, can be displayed as yc(z,T) = ycy/T€% D(z
where the constant ¢ specifies the compound while the
dimensionless quantity D(z) obeys the universal integral
equation

(e—0) ~ 374

D(z) = cosh; X (7

X// cosh £ cosh 232 (—y) D(z—2) D(2—y)

With this result, the damping ym(z,T) is calculated
straifghtforwardly:

dydz

w(z,T) = T coshg X (8)

X
// cosh ¥ cosh 52 (—y) D(z—y)’

the constant yy being a characteristics of the given com-
pound. The function ym(z,T)/T starts out of the ori-
gin as a parabolic function y(z,T)/T ~ 1 + 0.1z2.
The asymptotic regime yv(z,T) /T ~ z, stemming from
Eq. (6), is attained at & ~ 2.5.

Relations (7), (8) hold even in superfluid states as
long as the gap value remains less than the damping
vc(T). On the other hand, they are violated if en-
ergy attains values, at which contributions to y(g) that
were omitted from Egs. (3) and (6) become comparable
to the terms that were retained. A leading correction
d7c(€) to the integral (3) comes from final states, that
involve one hole (particle) belonging to the region T.
Eq. (6) can be employed to estimate this contribution,
with the single replacement s(p € M) — s(p € T).

dydz
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We find §yc(e — 0) ~ B e, which is independent of
the n value. Estimation of other corrections to y(g) is
carried out along the same lines, justifying the identi-
fication of (3) and (6) as paramount contributions to
Im¥g(p,e — 0) until € exceeds the characteristic FC
energy epc ~ 1e%, evaluated by comparison of §yc(e)
and 70 (¢) ~ B~ (nele) V2.

At energies € > epc corrections exhibit themselves
in full force, so Eq. (2) should be solved numerically in
conjunction with the Kramers-Kronig relation, employed
to connect y(g) and o(¢). This is performed with the aid
of an iteration procedure, which converges rapidly. In
Fig.1 we display results from these calculations. Two
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Fig.1. The damping of the SP states in the vicinity of
the vHP (solid lines) and around the diagonals of the
Brillouin zone (thin lines), calculated with the scat-
tering amplitude T'(p,p1) = (N(0))"[8% + k*(p —
p1 — Q)*]7!, where N(0) is the density of states and
B = 0.2, for n = 0.1 (upper panel) and = 0.01 (lower
panel), and measured in €%

different 7 values, specifying the fraction of the Bril-
louin zone occupied by the FC, were considered: (a)
n = 0.1, close to the maximum 7 value in the model of
fermion condensation driven by antiferromagnetic fluc-
tuations [18], and (b) 7 = 0.01. In spite of the sim-
plicity of the interaction adopted, salient features of
ARPES data [3, 6, 15] are reproduced, including the
shape of the curve InXg(p € M,z,T)/T as a function
of z = ¢/T measured in [3] for the optimally doped
cuprate BiaSryCaCu20g4 4, provided the proper nomal-
ization of the results is done. Moreover, our theory pre-
dicts the same behavior of In X g(p € M, z)/T in differ-
ent compounds. This can be seen from Fig.2, where two
curves of ImXg(p € M,z,T)/T evaluated at n = 0.1
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Fig.2. The ratio |[ImXg(¢e)|/T around the diagonal
of the Brillouin zone as a function of ¢/T, cal-
culated for = 0.1 (solid line) = 0.01 (thin
line) and normalized to the same slope k& = 0.75,
i.e. multiplied by the factor k/k(n), where k(n) =
[0Im X r(pEM,€,T;n)/0e|. The experimental data
for the optimally doped cuprate Bi2SraCaCuzOs45 [3]
are shown by open and solid circles (T = 300 K), tri-
angles and squares (I' = 90K), and diamonds and
stars (T = 48 K)

and = 0.01 and normalized at z > 1 to the same slope
are compared to each other and to experimental data
[3]. At the same time, as seen from the above formula
Yo(z,T) = vo+/Te% D(z) , the linearity of Im Xg(T)
with T at a given z, uncovered in [3], is destroyed in
the FC region, and instead this function displays v/T-
dependence.

The above scenario in which the fermion conden-
sation precedes the antiferromagnetic phase transition
does apply in the three-dimensional case, although the
range of the FC region shrinks markedly. Along the
same lines, one can analyze the situation with fermion
condensation in the vicinity of other second order phase
transitions, such as charge-density-wave instability [12].
So far the feedback of the FC on the scattering ampli-
tude I has been ignored. However, the simplest FC dia-
gram, i.e. a loop, evaluated with the FC Green function
(4), diverges logarithmically. As a result, we are led to
a familiar problem of the parquet-diagram summation,
solution of which will be reported in a separate paper.

Summing up the results of our analysis, we infer that
electron systems with a fermion condensate, irrespective
of the dimensionality, do not admit Landau quasiparti-
cles, since the renormalization factor z = (1 —9%/8¢) ;!

that determines the quasiparticle weight in the SP state
vanishes in all regions of the Brillouin zone. The model
of fermion condensation presented here allows one to ex-
plain basic features of the spectral functions of normal
states of high-T, superconductors, including (i) the mar-
ginal Fermi liquid behavior of the damping of SP states
around the diagonals of the Brillouin zone (the M re-
gion) and (ii) the suppression of the peaks in APRES
data in the immediate vicinity of the van Hove points
(the C region). And the universal behavior of the ra-
tio InXg(p € M,T,z)/T where z = ¢/T, as estab-
lished in the M region in [3], is also reproduced in
this model. Moreover, our model predicts that all data
for InXg(p € M, T,z)/T, when properly normalized,
should collapse on the same curve. However, as we have
seen, this universal behavior is destroyed in the C region.
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