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We study the Toda field theory with finite Lie algebras using an extension of the Goulian-Li technique.
In this way, we show that, after integrating over the zero mode in the correlation functions of the exponential
fields, the resulting correlation function resembles that of a free theory. Furthermore, it is shown that for some
ratios of the charges of the exponential fields the four-point correlation functions which contain a degenerate
field satisfy the Riemann ordinary differential equation. Using this fact and the crossing symmetry, we derive
a set of functional equations for the structure constants of the A; Toda field theory.

PACS: 11.10.-z

1. The Toda field theory (TFT) provides an ex-
tremely useful description of a large class of two-
dimensional integrable quantum field theories. For this
reason these models have attracted a considerable in-
terest in recent years and many outstanding results in
various directions have been established.

TFTs are divided in three broad categories: finite
Toda theories (FTFTs) for which the underlying Kac-
Moody algebra [1, 2] is a finite Lie algebra, affine Toda
theories (ATFTs) for which the underlying Kac-Moody
algebra is an affine algebra and indefinite Toda theories
(ITFTs) for which the underlying Kac-Moody algebra is
an indefinite Kac-Moody algebra. The classes of FTFTs
and ATFTs are well-studied and known to be integrable.
In addition, the FTFTs enjoy conformal invariance. A
review of the most interesting developments in ATFTs
is presented in Ref. [3] where there is also a list of re-
ferences to the original papers. The class of ITFTs is
the least studied as there are still many open questions
regarding the indefinite Kac-Moody algebras. A special
class of the ITFTs, namely the hyperbolic Toda Theo-
ries (HTFTs), for which the underlying Kac-Moody al-
gebra is a hyperbolic Kac-Moody algebra were studied
in Ref. [4] and it was shown that they are conformal but
not integrable.

However, despite all progress in TFTs, there still
remain many unresolved questions and problems. For
example, one may ask what the structure constants of
the conformally invariant TFTs are. In this paper, we
address this question. We focus on FTFs and, in par-
ticular, on the As FTT.
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In Sec. 2 the A; FTFT is introduced, some notations
are fixed, and then we continue to show how the correla-
tion function of exponential fields in the FTFT reduces
to correlation functions of a free field theory with con-
formal W-symmetry [5—-8]. In Sec. 3 we prove that,
for some special cases of the exponential fields, the four-
point correlation functions which contain a “degenerate”
primary field satisfy the Riemann ordinary differential
equation. Then, in Sec. 4 the conformal bootstrap tech-
nique is applied to derive a set of functional equations
for the structure constants of the A, FTFT.

2. A, Finite Toda Field Theory. We consider
the finite conformal Toda field theory associated with
the simply-laced Lie algebra A, described by the action

S=/d2:v

In the above equation, e; (i = 1,2) are the simple roots
of Lie algebra As. These define the fundamental weights
w; of the Lie algebra by the equation

2
i 2 bei-(p £
o (09) +ui§e + Q0| O

€ -WwW; = (5”

The background charge Q is proportional to the Weyl
vector p:

2
Q=(b+1/b)p, p=> wi
=1

The local conformal invariance of the FTFT with
central charge
c=2+12Q?

is ensured by the existence of the holomorphic and an-
tiholomorphic energy-momentum tensors
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T() = —3(00)+ Q-

T() = —500)+Q-P.

It is well-known that the FTFTs possess, besides the
standard conformal symmetry, an additional W-sym-
metry. In particular, the Ay FTFT we are studying in
the present paper contains the additional holomorphic
and antiholomorphic currents W (z), W (z) with spin 3,
which generate the W3 algebra.

The vertex operators

Va(z) = e?*%(®)

are spinless primary fields of the W-algebra. Let L,
W, be the Fourier modes of the holomorphic fields T'(z),
W (z). Then

LoV, = A(a) V87 WoVa = w(a) Vaa

L,Vo, =0, WpVa=0, n>0,

where the conformal dimension A(a) is given by
A(a) =2a-(Q —a).

The correlation function of N vertex operators is for-
mally defined by the functional integral

N
Gal,._. Jan (a:l, - ,zn) = I'D(p H e2a;-cp(z;)e—5[4p]. (2)
i=1

We introduce the following orthogonal decomposition of
the field ¢:

#(2) = po + p(2),

where ¢, is the zero mode and ¢ denotes the part of the
field that is orthogonal to the zero mode:

/d2a: @(z) =0.

Now, the integration of the functional integral (2) over
the zero mode ¢, can be done in a similar fashion to the
Liouville case [9] to find

Gal,... ,an (mla e ,ﬂ?n) =

s1+82 1
- (£ . D(—s)T(=
(87r> dete] (o1 (=82) x
N 81
X JD@Hek“;’(z‘) (/ dzxeb°1'¢) X
i=1

X (/ d’z ebe2"7’) : e Sol®l (3)

where Sy is the action of the free field theory,

1 R
so=/d2a: L 08)+ Q-5
87 47
and

81 = (b det eij)il[—Q€22 + kiesa — k2621],

s2 = (bdete;;) [—Qern + kae11 — k1e1a],

N
k=2 a;, Q=(Q,0).
=1

Assuming that s; and s are both positive integers,
then the remaining functional integral in expression (3)
can be reduced to the correlation function of the W3 mi-
nimal model [7, 8]. Unfortunately, the situation is much
more complicated, i.e., in general, s; and s3 are not po-
sitive integers. However, the solution of the problem is
hidden in the previous observation: supposing that we
know the exact expressions of the structure constants
for the W3 minimal model, then we can recover the ex-
pressions for the structure constants of the A FTFT
by analytic continuation (similarly to the Liouville case)
[10, 11].

3. Four-Point Correlation Functions. Now, let’s
concentrate on the following 4-point correlation function:

(Va, (2)Va, (21) Vay (22) Vay (23)) =
= Ga,ajaza;s (2, 21, 22, 23), (4)
where the special vertex operator
Va,(2) = e2+® a, = (—b, b/\/g)
satisfies the null vector equation
[AL(BAL + )W 5 — 12w, L%, +
+ 6wy (Ay +1)L_5]Va, =0. (5)

Taking into account the last equation and the explicit
representation of the current W in terms of the field d¢
(see Ref. [8]), we find that the selected 4-point correla-
tion function satisfies the differential equation

62
(A + Uﬁ(Va* (2)Vay (21)Va, (22) Vag (23)) —
3 A; +6; 1 9
~ 2% (z — 2;)? 2 — 2; 02

X <V8+ (Z)Val (zl)Vaz (Zz)Va3 (23)) +
3 Ai
+4Zi:1 m(va+ "'6901Va,- ...) +
3 B;
+4) i o Vay - 0p2Va, o) =0, (6)
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where

8 = —2v2i[2a2(a2, — a?)) + 2a:s (a3, —ai,) +
+ at2a41 (4a+1 — Q) — a410a;32 (40/1'1 - Q)]a
A; = 2V2i(aj0ai1 + ay1ai2),

Bi = 2\/§i(a+1a,~1 — a+2ai2).

Moreover, for the special ratios

2
ﬂz:_ﬁghh+(&g )
ai1 a1 a1

of the charges a;, equation (6) can be further reduced to
the equation
62

(B +1) 55 (Va, (2)Vay (21)Va, (22) Vay (23)) —

A; + 6; 1+4 0
—9y8 ¢ ¢ el
2=t [(z —2zi)? + (z —zi) 6zi]

X <Va+ (z)Val (zl)Va2 (zZ)Vas (Z3)> =0, (8)

where A = +2v/2iy/a%, +a2,. It is well-known that
in the case of the four-point functions, the partial diffe-
rential equation (8), using the projective Ward identities
[12], can be reduced to the Riemann ordinary differential
equation

1 2
§(A+ + 1)@ + i1

1+Ad A; + 6

z—zidz (z—zi)2:|
AL+ Aij

+ (1 + A) E?<j (Z _—;)(z _ zj) }

X <Va+ (Z)Val (Zl)vaz (ZZ)Va:s (2'3)) =0, (9)

where Aj; = A; + Aj — Ay, (k#14,5), (4,4, =1,2,3).
4. Functional Equations for Structure Con-

stants. Now any four-point function can be explicitly

decomposed in terms of the three-point function

Gajazaza, (za 2) =
= <V81 (zlv z1)‘/:12 (z2a 22)V83 (237 Z3)1/84 (247 Z4)) =
=Y aC(a1,a2,Q — a)C(a, a3,a4) x

&(m”>@a
agzay

Conformal invariance allows us to set z; = 0, 25 = 2,
z3 = 1, z4 = oo. As a consequence, the crossing sym-
metry condition is written as

X (10)

Ga,asaza, (Z, 2) = Gajasazas (1 —z,1— 2) =

=722z 280 nan(1/2,1/7).
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To discover additional information about the struc-
ture constants of the FTFT, we will use technique sug-
gested in Ref. [13]. So, let’s assume that ay = a,, i.e.
the correlation function (10) includes the degenerate field
Va,. Then the charges of the intermediate channel will
take the following values [7]

(@11 + ay1,a12 + ay2),
(11)

(@11 — ay1,012 + ay2), (a11,012 — 2a432).

This implies the following “fusion rules”

Va+ Va= [Va1+a+1,a2+a+2] +
+ [Val —a+1,az+a+z] + [Val,a2—2a+2]'

It is more convenient to introduce the following
“parametrization” of the intermediate charge (11)

a(s) = (a11 + say1,a12 + (3s? — 2)as2),
s=0, £1.

Using this parametrization, we can rewrite (10) as fol-
lows:

Gala+aaa4 (zv Z) =

=Y —0,+1C(a1,a4,Q —a(s))C(a(s), a3, a4) x

a(““)wa
agzay

In this notation the crossing symmetry relation for
Gaja azas(2,2) is

Zszo,ﬂ Cs (a1)C(a(s), a3, a4) x

F, ( a1a ) (2,2)
agzay

= [2| 744 Ep:O,:I:l Cp(as)C(a(p),a3,a1) x

&(““)umua

azay

X (12)

X

2

X ) (13)

where we have denoted
C(al y A,y Q - a(s)) =G (al)

and
Clas,ar,Q —a(p)) = Cp(aq).

It follows from (9) that the conformal block must satisfy
the following relation
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Fy < R ) (Z,Z) =
azay

— , 20y S o0s1 MyoFy ( aja ) (1/2,1/2), (14)

aza;

where M, is a matrix that is determined by the mo-
nodromy properties of the differential equation equation
(9) or, alternatively, can be determined by the method
developed in Ref. [14]. The exact analitical expression of
the matrix M, can be found in the number of the papers
[8, 15, 14]. We will not write down these expressions for
the reason of the limited frame of the paper.

Substituting (14) into (13), we find the following
functional equations for the A, FTFT structure con-
stants:

Z (CS (al)C(a(S), ag, a4)Ms,0Ms,1 = 0,

§=0,+1
E (Cs (al)C(a(s)va3>a4)Ms,0Ms,—1 = Oa (]_5)
§=0,£1
Z (CS (al)(C(a(s), ag, a4)Ms,1Ms,—1 = Oa
s=0,£1

provided a;, a3, a4 satisfy the constraint (7).

It is important to notice that Eq. (5), ad-
mits additional solutions besides a.. In parti-
cular, a* = (-b,-b/3), a_ = (=1/b,1/bv3),
a~ = (—1/b,—1/bv/3) are all solutions of (5). Therefore
the set of Egs. (15) should be complemented by a
similar set of equations obtained for the special case a™
and then add for each equation its ‘dual equation’ using
the subsitutions b — 1/b and g — fi. The parameter i
is defined by duality relations [16]

e%bz 3 9 e?b2/2
Y 9 = Tuy o2b2 ’

where y(z) =T'(z)/T(1 — z).

In principale, in terms of the special function ”Up-
silon” [10, 11], the complete set of the algebraic equa-
tions derived above for the special cases a,,at,a ,a~
allows the computation of all structure constants for the
Ay FTFT. We postpone the difficult problems of the ex-
act determination of the structure constants and proof
of the uniqueness of the solution for future studies.
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