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Focusing of nonlinear wave groups in deep water
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The freak wave phenomenon in the ocean is explained by the nonlinear dynamics of phase modulated wave
trains. It is shown that the preliminary quadratic phase modulation of wave packets leads to the significant
amplification of the “usual” modulation (Benjamin-Feir) instability. Physically, the phase modulation of water
waves may be due to a variable wind in storm areas. The well-known breather solutions of the cubic Schrodinger
equation appear on the final stage of the nonlinear dynamics of the wave packets, when the phase modulation

becomes more uniform.
PACS: 47.35.+i, 92.10.Hm, 92.60.Dj

The increase of a number of reported damages
of ships and offshore platforms is explained very of-
ten by the freak wave appearance on the sea surface
[1, 2]. Several physical mechanisms of the freak wave
phenomenon are discussed. First of all, the water wave
interaction with opposite current is considered as a
mechanism of wave amplification due to the blocking
of water waves on the current. This phenomenon is
investigated within the framework of the wave action
balance equation and the variable-coefficient nonlinear
Schrodinger equation [2—4]. The second mechanism of
wave amplification is related with the formation of caus-
tics in the wave field on random currents [5]. These
theories are used to explain the freak wave formation
due to the Agulhas current off the south-east coast of
South Africa. Many observations of abnormal waves had
been done in areas with no strong currents. For such ar-
eas the opinion that the nonlinearity of surface waves in
deep water can produce the giant wave by itself becomes
very popular [6, 7]. The theory is based on the mod-
ulation instability of water waves (see the review [§]),
and existence of breather-like solutions of the nonlinear
Schrodinger equation [7,9,10—13]. The amplitude of
breathers can exceed the amplitude of unperturbed non-
modulated wave trains more than twice (remind that it
is the formal definition of a freak wave). The nonlinear
Schrddinger equation is a simplified model of real wind
waves, more sophisticated models are applied too (Za-
kharov equation, Dysthe equation, etc). In [6] a freak
wave formation due to modulation instability computed
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by a numerical model of the full-nonlinear hydrodynamic
potential equations was compared with cubic nonlinear
Schrédinger equation and found a good agreement if the
steepness of waves is not too large. According to these
theories freak waves exist during the characteristic time
scale of the modulation instability and may propagate
on relatively large distance. Meanwhile the event de-
scriptions emphasize the very short-lived character of
the freak wave. In our opinion, the mechanism of the
focusing of water wave packets related to the phase (fre-
quency) modulation should play a significant role in the
short-lived freak wave formation. This mechanism is
well-known in the linear theory of dispersive waves [14]
and may occur for specific meteorological conditions.
For instance, the increase of wind speed generates dur-
ing the early stages wave packets with low group veloci-
ties and later wave packets with larger group velocities.
The result of the propagation process is the formation of
an impulse of very large amplitude which is due to the
superposition of many spectral packets. Analytic solu-
tions, proving this linear focusing mechanism, are pre-
sented in [15]. In laboratory tanks the phenomenon of
significant wave focusing was reported [16, 17] for a wide
variation of the wavelength/depth ratio for deep water
and shallow water as well. Recently, [18] showed that
the mechanism of wave focusing can be applied in the
weakly nonlinear theory of shallow water 2 (Korteweg —
de Vries model) and suggested the way to find possi-
ble forms of wave trains moving towards the freak wave,
including random background of wind waves. Owing to

2)The process of focusing of phase-modulated impulses in non-
linear media is also known and applied in optics [19, 20].
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the absence of the modulation instability for shallow wa-
ter, the wave focusing mechanism seems to be major in
shallow water.

The present paper deals with the freak wave for-
mation in deep water due to the focusing of nonlinear
wave packets with phase modulation. This mechanism
is compared with the possible generation of giant waves
(breathers) due to the “usual” modulation instability of
water waves. The main result of the paper is that the fre-
quency modulation of a nonlinear wave field can lead to
larger amplification of the freak wave than the amplitude
modulation usually considered by previous authors.

The simple model of weakly nonlinear deep-water
wave packets is the famous cubic Schrédinger equation

0A 0%4 N

ZE+W+2|A| A=0, 1
where in dimensionless variables A is proportional to
the wave steepness, A = v/2koa, a is the amplitude of
the surface elevation, kg and wg are the carrier wave
number and frequency respectively, z = 2koz’' — wpt’,
t = wot'/2, «' and t' are coordinate and time. Due to
the invariance transformation of (1), t — —t, i — —i,
the simplest algorithm to find the nonlinear wave packets
moving towards the giant wave can be suggested: take
the expected form of the freak wave as an initial condi-
tion for (1), and consider the resulting field as the initial
condition that gives the freak wave under the invariant
transformation. The solution of the Cauchy problem for
the nonlinear Schrodinger equation is known by using
the inverse scattering method, see the pioneering paper
[21]. In general, the scattering data include both, con-
tinuous and discrete spectra. The continuous spectrum
corresponds to the dispersive wave packets. In the case
of no discrete spectrum, the solution of (1) tends to the
phase-modulated wave for large times

2
A(z,t) = %exp [z (Z—t+2Q2lnt+0>] ,  (2)
where @) and 0 are functions of (z/t) [22]. When @ and
# are real constants, (2) gives an exact solution of (1),
which is almost the same as the self-similar solution of
the linear version of (1). The difference is in the log-
arithmic term of the phase. Replacing t on T — ¢ and
1 on —i, the solution (2) describes the transformation
of the initial frequency modulated wave into the delta-
function formally representing the freak wave. There-
fore, the mechanism of wave focusing is valid in linear
theory and in nonlinear theory as well, but the nonlin-
earity influences the optimal phase (wavenumber) distri-
bution of individual waves due to the logarithmic term
that depends on wave intensity.
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Each discrete eigenvalue A of the spectrum corre-
sponds to an isolated soliton with amplitude 2a and
speed 4b, where a = Re()\) and b = Im()) [21]. The
number of the discrete eigenvalues depends on the form
and energy of the initial disturbance. If the expected
freak wave has the form of an isolated crest with vanish-
ing tails at infinity and no phase modulation, all discrete
eigenvalues are real and correspond to the “standing”
solitary waves. Due to interaction between them, the re-
sulting wave field is unsteady and shows the complex pic-
ture of the oscillating impulses of non-constant form. In
particular, the two-soliton solution (bi-soliton) describes
a wave which breathes with the period T = 7/2|a% —a?|,
its peak value is A;q; = 2(a1 + a2) where a; = Re()\;)
and a2 = Re(\2). The discrete spectrum is found for
several forms of initial disturbances, in particular, [23]
considered the profile A¢,(z) = Apsech(z/L) (index fr
refers to the freak wave). Eigenvalues are positive and
equal to

M 1

AmLl="=—n+-,

- 5 n=12..N, 3)

where the number of eigenvalues is

M 1], 4)

N=F I:? + 5
E is the integer function and M is the mass of the freak
wave, M = wA,L.

It is important to note that, if M < 7/2, there is
no soliton generation, and this case can be considered
as “quasi-linear”. The wave evolves like the self-similar
solution (2): at first, the wave focuses on short freak
wave, and then disperses. The one soliton forms, if
m/2 < M < 3w/2, and its amplitude will vary from 0 to
2A4,. In the latter case, the soliton amplitude exceeds the
amplitude of the initial disturbance. If we consider such
a wave group (one soliton with amplitude 24, and the
dispersive tail) as an initial condition, it will transform
into the sech-disturbance, but it has no specificity of the
expected freak wave (its amplitude should be large on
the background of other waves). If we introduce the for-
mal definition of the freak wave (its amplitude exceeds
at least twice the background amplitude), it means that
the amplitude of the freak wave should satisfy the fol-
lowing condition

M < 21/3. (5)

Therefore, the freak wave generated from the bounded
wave group is a weakly nonlinear wave. Such a wave
can be generated by dispersive wave packets only, if
M < m/2, or by dispersive wave packets plus the single
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soliton, if /2 < M < 2x/3. The interaction between
solitons only cannot generates the large-amplitude im-
pulse; it will be comparable with solitons in amplitude.
If we consider other profiles of the expected freak wave,
different from the sech-function, integer constants in (3),
(4) will change (see, for instance, [24]), but in the same
order of magnitude. If we consider the initial impulse
with the quadratic phase modulation like exp(igz?), the
discrete eigenvalues will increase with ¢ [25]. This result
is obvious, because such a disturbance will transform,
first, into an impulse with no phase modulation due to
the wave focusing, and this large impulse leads to the
large eigenvalues. Therefore, the form of the expected
freak wave can be taken with no phase modulation and
details of the waveform have no principal significance for
the understanding of the wave focusing phenomenon in
the nonlinear medium. Described above the mechanism
of freak wave formation from the bounded wave packets
is the same as for shallow water [18].

The mechanism of the localized wave formation (soli-
tons or breathers) from the preliminary plane wave due
to the modulation instability is studied since almost 20
years. Several nonlinear structures can be considered as
models for the freak wave, its peak amplitude exceeds
more than twice the unperturbed value. First of all,
there is the Ma-breather [7, 9]

_ cos(Qt — 2ip) — cosh(yp) cosh(pz)

Az, t) cos(Qt) — cosh(yp) cosh(pz)

exp(2it),
(6)

where p = 2sinh(p), @ = 2sinh(2¢p), and ¢ is an ar-
bitrary positive constant. This wave tends to the un-
perturbed plane wave of unit amplitude for |z| — oo,
and its amplitude is time periodic with the frequency €.
The peak value of the breather exceeds twice and more
the unperturbed value for 0 < ¢ < 0.96. It is impor-
tant to emphasize that the freak wave phenomenon has
a periodic character in this model.

Another solution, called “homoclinic orbit” was
found in [11, 13] and may be expressed by (6) if to
change ¢ to —ip, p to —ip and Q to —if). This wave
is periodic in space, and tends to the unperturbed plane
wave when |t| — oco. The maximal peak value of the im-
pulse is less than 3. This “homoclinic orbit” can be con-
sidered also as a model for the freak wave for ¢ > /3.
It is important to mention that freak waves in this model
should appear simultaneously in many spatial points.

Both breather solutions considered above for ¢ = 0
transform into the “algebraic” breather [10] with an in-
crease of the peak value three times the value of the
unperturbed wave amplitude. During the moment of
maximal amplification (¢ = 0), the freak wave repre-

sents the large crest above the unperturbed plane wave
(lz] < 1/2), and two depressions up to zero. The mass
of this positive crest only is

+1/2
M = / |A(z,0)|dz = 1 + 4atanh(1/2) ~ 2.9. (7)
-1/2

Thus, the breather solution provides a model for the
freak wave with mass greater than for “pure focusing”
regime, see (5). This is the main “kinematic” differ-
ence between “focused” and “nonlinear” freak waves.
Physically, this difference can be clarified as follows.
The “focused” freak wave is formed by the superpo-
sition of many spectral components, and the number of
spectral components, or the effective spectrum width,
Ko should be large to provide the narrow crest. The
“focused” freak wave is a very weakly nonlinear disper-
sive wave, and it should be narrow if dispersion pre-
vails over nonlinearity. Its time of existence can be
very small. The “nonlinear” freak wave is due to the
modulation instability. As it is well-known (see, for in-
stance, [8]), the width of the unstable spectral domain
is Kpr = 240, and the characteristic time-scale of the
instability is Tgr ~ 1/2A32, where Ao is the amplitude
of the unperturbed plane wave. For “nonlinear” freak
wave, dispersion and nonlinearity are of the same or-
der. Its time of existence is the characteristic time of the
modulation instability.

For small wave amplitudes the width of the modu-
lation instability is narrow and the “focusing” mecha-
nism should dominate. With the increase of the unper-
turbed wave amplitudes, Kpr will become comparable
to Ky, and the spectral components will contribute in
both processes of the formation of the freak wave. In the
case of no specific phase modulation of the wave packet,
the “nonlinear” mechanism of the freak wave phenom-
enon should dominate the general dynamics of the wave
field. But if the specific order of the “draw up” of the
spectral components is organized (for instance due to
the wind action), the phase modulation can cardinally
change the modulation instability. The important role
of frequency modulation on the modulation instability
was emphasized by [26]. He pointed out that the small
focusing effects may have a destabilizing effect under
certain conditions. Nevertheless it seems that the non-
linear stage of the modulation instability for frequency
modulated wave packets was not yet investigated pre-
viously in literature. The effect of the quadratic phase
modulation on the nonlinear evolution of the modulation
instability is considered here numerically.

The nonlinear Schrédinger equation is solved by us-
ing a pseudo-spectral method in a periodic domain of
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Fig.1. Development of the modulation instability for
different phase indexes D. Time of appearance of the
wave of maximal amplitude is provided
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Fig.2. Time of appearance of the freak wave as a func-
tion of D

dimensionless length 176; the number of points is varied
from 128 to 1024. The initial condition is

A(z,0) = Ag (1 + 0.1cos(z/d)) exp(iz?/D?),  (8)
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where Ay = 0.043, d = 28, and D is varied in wide
ranges. Fig.1 shows the various forms of the freak wave
for different phase indexes D. The maximal amplitude
is reached at different moments of time; they are given
in Fig.1. The phase modulation of the initial envelope
leads to the increase of the wave amplitude and to the
decrease of time of the freak wave formation (the latter
is provided in Fig.2). For small D the formation time
is described by the power asymptotic (T' ~ D?/4), as it
can be shown in the linear theory; for large D it tends to
the constant value defined by the modulation instability
(approximately 3 Tgr). As it is predicted, the phase
modulation of the preliminary amplitude modulated en-
velope leads to the formation of a more energetic wave
impulse at a shorter time.
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Fig.3. Wave evolution from the initial modulated dis-
turbance (D = 28) at different times

For D = 28, the long-term nonlinear dynamics of the
wayve field is displayed in Fig.3. The phase modulation
leads to the complex picture of the wave envelope with
one or several peaks and holes, they can be considered
as a group of freak waves. The time evolution of the
maximal value of wave amplitude is shown in Fig.4a.
The very large amplitude peaks appear several times
during 12000 time units and their amplitudes decrease
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with time. Then the process becomes more stationary
and peaks with amplitudes about 0.12 appear regularly.
Fig.4b shows the time evolution within the framework
of the linear theory. In this case the process of the gen-
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Fig.4. Time variation of the maximal amplitude in the
wave packets for D = 28, (a) nonlinear and (b) linear
cases

eration of significant peaks is almost periodic. Similar
behavior is found for wide ranges of the variation of the
phase index D. Physically, the role of nonlinearity in
the wave field behavior can be explained as follows. The
quadratic phase modulation in (8) corresponds to a lin-
ear variation of the wave number (wave frequency) with
distance. On the first stage the slope of K (z) increases
and tends to infinity leading to the focusing (easy to
show for linear waves within the framework of the kine-
matic equation for the wave number). After focusing,
the slope of K(x) changes its sign and decreases. Then,
the jump in wave number is formed and the function
K (z) becomes multi-valued with many jumps. As a re-
sult, the wave packet in the periodic problem can focus
many times, as it is shown in Fig.4b. The nonlinear ef-
fects leads to the smoothing and uniformity of the phase
distribution. Here, the role of the classical modulation
instability is more significant and the wave transforma-
tion is similar to the one studied in [6, 12, 13]. At this
stage the amplitude of the freak wave is less than three
times the amplitude of the unperturbed value.

Therefore, the effect of the phase modulation of the
initial wave disturbance leads to a significant intensifi-
cation of the process of the freak wave generation. The
phase modulation of the wind wave field can be due to
specific meteorological conditions and the relation be-
tween the observed freak waves and heavy weather con-
ditions is very often mentioned in literature. Due to the
short time of existence of the freak wave, the random
forcing from the wind (this process should be studied
within the framework of the forced version of the non-
linear Schrodinger equation) cannot modify radically the
process of the freak wave formation from the frequency
modulated disturbances at least on the first stage, mean-
while as it was shown in [27], the “usual” modulation
instability is reduced in the random fields.

The one-dimensional model used cannot predict the
behaviour of the wave field in two-dimensional case. The
transversal instability (see [28]) may have an influence
on the process of formation of a freak wave. This should
become a topic for following investigations.
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