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Non-Fermi liquid theory of the quantum Hall effects
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Within the Grassmannian U(2N)/U(N) x U(N) non-linear o model representation of localization one can
study the low energy dynamics of both the free and interacting electron gas. We study the cross-over between
these two fundamentally different physical problems. We show how the topological arguments for the exact
quantization of the Hall conductance are extended to include the Coulomb interaction problem. We discuss
dynamical scaling and make contact with the theory of variable range hopping.

PACS: 71.10.Pm, 72.10.—d, 73.43.—f

Over the last few years, much effort has been devoted
to the problem of localization and interaction effects in
the quantum Hall regime [1-6]. By now it is well un-
derstood that the Coulomb interaction problem falls in
a non-Fermi liquid universality class of transport prob-
lems with a novel symmetry, named F invariance [2].
Although the results for scaling are in many ways sim-
ilar to those obtained for the free electron gas [7], it is
important to bear in mind that the Coulomb interaction
problem is a far richer one. Unlike the free particle prob-
lem, for example, the field theory for interacting particles
provides the platform for a unification of the fractional
quantum Hall regime and the quantum theory of met-
als [2,4—6]. The principal features of this unification
are encapsulated in a scaling diagram for the longitu-
dinal and Hall conductances 0, and 0., respectively
(Figure). The Finkelstein approach to localization and
interaction phenomena [8, 9], the topological concept of
an instanton vacuum [10] as well as the Chern Simons
statistical gauge fields [11] are all essential in composing
this diagram.

The main objective of this Letter is to embark on
the most fundamental aspect of the theory, the observ-
ability and precision of the quantum Hall effect. This
experimental phenomenon is represented in Figure by
the infrared stable fixed points located at o, = 0 and
0zy = k (integer effect) as well as o,y = k/(2k + 1)
(Jain series) [12]. These fixed points, however, define
the strong coupling phase of the unifying action where
analytic work is generally impossible. In spite of am-
ple experimental evidence for its existence, the robust
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Unified scaling diagram for the quantum Hall effects in
the 032, 02y conductivity plane. The arrows indicate the
direction towards the infrared

quantization of the Hall conductance has yet to be es-
tablished as a fundamental but previously unrecognized
feature of the topological § vacuum concept [10].

In what follows we shall benefit from the advance-
ments reported in Ref. [13]. In particular, since the
Finkelstein theory is formally defined as a ¢ model on
the Grassmann manifold U(2N)/U(N) x U(N) with N
equal to N, (number of replica’s) times N, (number
of Matsubara frequencies), we can now use our general
knowledge on the strong coupling behavior of the theory
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and probe, for the first time, the quantum Hall phases
in the interacting electron gas.

To achieve our goals we first shall outline some of
the recent advancements in the field. It is important
to emphasize that the complete effective action for in-
teracting particles now exists [2]. This action includes
the coupling to external potentials and/or Chern Simon
gauge fields. This leads to a detailed understanding of
the electrodynamic U(1) gauge invariance and provides
invaluable information on the renormalization of the the-
ory that was not available before.

Secondly, it is necessary to have a more detailed un-
derstanding of how the subtleties of interaction effects
can be understood as a field theory. For this purpose
we report new results on the Grassmannian non-linear
o model with N, = 0 and varying N,,. These show ex-
plicitly how the cross-over takes place between a theory
of free particles at finite values of N,,, and a many body
theory that is generally obtained in the limit NV,, — oo
only. Armed with these insights we next point out how
the Coulomb interaction problem, at zero temperature
(T), displays the general topological features and 6 de-
pendence that were discovered in Ref. [13].

As a third and final step toward the strong coupling
phase we discuss the subject of dynamical scaling. As a
unique product of our effective action procedure we ob-
tain a distinctly different behavior at finite 7', depending
on the specific regime of the interacting electron gas that
one is interested in. We establish, at the same time, the
contact with the theory for variable range hopping [14].
e The action. Following Finkelstein [8], the effec-
tive quantum theory for disordered (spin polarized or
spinless) electrons is given in terms of a generalized
o model involving the unitary matrix field variables
Q%5 (r) which obey Q?(r) = 1. Here, a, ( represent
the replica indices, n, m are the indices of the Matsub-
ara frequencies wy = 7T(2k + 1). In terms of ordinary
unitary rotations 7,22 one can write

Q =T AT, A =A% =sign(w,)128 (1)
indicating that the @) describes a Goldstone manifold of
a broken symmetry between positive and negative fre-
quencies. A U(1) gauge transformation in frequency
space is represented by a unitary matrix W22

W =exp{i ¥ _ ¢*(r,v)I2}, (2)

with v, = 27Tn. Here, [I)]98 = 676576y m1r denote
the U(1) generators. In finite frequency space with a
cut-off (IV,,,), the I matrices no longer span a U(1) alge-
bra. To define the U(1) gauge invariance in a truncated
IIncema B AT Tom 82
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frequency space we have developed a set of rules (F al-
gebra [2]). These involve one more (frequency) matrix,
ne8 = nd2P | that is used to represent w,. The effective
action for electrons in a static magnetic field B and cou-
pled to external potentials and/or Chern Simons fields

aj;(r,vn) with v, # 0, can now be written as [2]

Set = Sy + S + Sy + So- (3)

Here, S, is the free electron piece [7]

Sp = =% [ v (D, QUID:, Q) +
Oz
+72 [ drere;QID, QIID;, @, @)
where D; = V; — i) af(r,v,)I; is the covariant

derivative. Next, the two pieces Sg and Sy are linear
in temperature T and represent interaction terms. Sg
is gauge invariant and contains the singlet interaction
term [8]

SF:sz/dr thr IZQtrI%,Q + 4tr nQ — 6trnA] .
(5)

The (Coulomb) term Sy contains the scalar potential
a 1 ~
SU:—WTg/drdr' [tr IXQ(r) — ﬁag(r, V_n)] X

x U L(r—r') [tr 1%, Q') — WLT&B‘(r',Vn)] . (6)

The Sy contains the magnetic field b* = eijVia;’-‘:
2
So = —%%/drgba(r, )b (r,v_y).  (7)

We have defined (dropping the replica index a on a,)

do=ao— L2, Ul@)=p~t+Usl) (8)
Here, the density of states p = (On/du)r,p and the
quantity pp = (0n/0B)r,, are thermodynamic quanti-
ties, n and p being the particle density and the chemical
potential respectively. The statement of gauge invari-
ance now means that the theory is invariant under the
following transformation

Q ->wlQw, ay, — ay + 0,9. (9)

Using Eq. (9) it is easy to see that the action is invari-
ant under spatially independent gauge transformations
¢ = ¢(v,) provided the interaction potential Uy has an
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infinite range. This global invariance, termed F invari-
ance, is an exact symmetry of the Coulomb interaction
problem which in two spatial dimensions is represented
by U *(q) =Tlql.

e Static versus dynamic response. Our introduction of
external potentials (statistical gauge fields) a, can be
exploited immediately to elucidate fundamental aspects
of the quantum transport problem in strong B. For
this purpose we consider Seg[a,] obtained after elim-
ination of the @ fields. Defining the particle density
N = T88Seg/ba0(v_m) we obtain, at a tree level, the
continuity equation [2]

Vm (Nm + 10zy0) =V - [Uu(e + V(Uonm)) —
- Dzzv(nm + ZpBb):I . (10)

Here, D,, = 0,;/p denotes the diffusion constant and
e, b are the external electric and magnetic fields re-
spectively. This result is familiar from the theory of
metals [15] where the quantity pp is usually neglected.
Notice that in the static limit v,, — 0 both quantities
o;; drop out and the equation now contains the thermo-
dynamic quantities p, pp and Up only. Since the fields
a,(r,v, = 0) are completely decoupled from the @ field
variables, the static response is actually determined by
a different, underlying theory. This means that p, pp,
Up and hence Sy and S should not have any quan-
tum corrections in general, either perturbatively or non-
perturbatively. This observation can be used as a gen-
eral physical constraint that must be imposed on the
quantum theory. The only quantities that are allowed
to have quantum corrections are the transport parame-
ters 044, 0y, and the singlet interaction amplitude z.
As an important check on the statements of gauge
invariance and renormalization, we have evaluated the
quantum theory in 2 + € spatial dimensions to order €2.
The results of the computation, along with an exten-
sive analysis of dynamical scaling, have been reported
in Ref. [6].
e F invariance. The renormalizability can be addressed
more formally, by making contact with the theory of or-
dinary non-linear sigma models [16]. For this purpose
we drop the external potentials from the action and re-
call that for finite size matrices @, operators like Sg play
the role of infrared regulators that do not affect the sin-
gularity structure of the theory at short distances. We
know in particular that the theory is renormalizable in
two dimensions. Besides the coupling constant or o,
one additional renormalization constant is needed for
the operators linear in the () matrix field and two more
are generally needed for the operators bilinear in the @
(i-e. the symmetric and anti-symmetric representation

respectively) [17]. These general statements apply to the
Finkelstein action as well since the latter only demands
that the number of Matsubara frequencies IV, is taken
to infinity (along with N, — 0). To completely undust
this point we have computed the cross over functions for
the theory where the quantity U~1(r—r') in Sy, Eq. (6),
is replaced by its most relevant part

Ule—r'")—2(1-c)d(r—r"). (11)

Notice that 0 < ¢ < 1 represents the finite range inter-
action case. The extreme cases ¢ = 0 and 1 describe the
free electron gas and the Coulomb system respectively.
F invariance is retained for ¢ = 1 only and broken oth-
erwise.

The following renormalization group functions have
been obtained for the parameters z, ¢ and the dimension-
less resistance g = p€/mo,, in 2 + € spatial dimensions
(u denotes an arbitrary momentum scale) [18]

dg 9 1-c¢
m = €g 29 f =+ P ln(l Cf) , (12)
dlnz
T = 9 (13)
dc
dnp ge(l —cf). (14)

Here, f = M?/(u®+ M?) is a y-dependent function with
M? = 8r2TN,,/0,, which depends on the cut-off N,.

For f = 0 (u > M or short distances) we obtain
the well known results for free particles [16, 17], i.e.
dg/dln p has no one-loop contribution, z has no quan-
tum corrections in general and the result for ¢ coincides
with the renormalization of symmetric operators, bilin-
ear in Q).

For f =1 (1 < M or large distances), we obtain the
peculiar Finkelstein results of the interacting electron
gas [3, 9]. The symmetry breaking parameter ¢ now
affects the renormalization of all the other parameters.
The concept of F invariance (¢ = 1) manifests itself as
a new (non-Fermi liquid) fixed point in the theory. The
problem with 0 < ¢ < 1 lies in the domain of attrac-
tion of the Fermi liquid line ¢ = 0 which is stable in the
infrared.

Notice, however, that the F invariant fixed point
¢ = 1 only exists if the mass M in the theory remains
finite at zero T. This clearly shows that, in order for F
invariance to represent an exact symmetry of the prob-
lem, N,,, must be infinite. The time 7 plays the role of an
extra, non-trivial dimension and this dramatically com-
plicates the problem of plateau transitions in the quan-
tum Hall regime. The Coulomb interaction problem,
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unlike the free electron theory, is given as a 2+ 1 dimen-
sional field theory, thus invalidating any attempt toward
exact solutions of the experimentally observed critical
indices [19-22].

e The quantum Hall effect. Next, we turn to the most
interesting aspect of the theory, the o4, term (6 term),
which is invisible in perturbative expansions. However,
we may proceed along the same lines as pointed out in
Ref. [13] and separate, in the theory for T = 0, the bulk
quantities from the edge quantities [23, 10]

0

— Z
o kez,

—nr <0<,
(15)

Oy =VvB=k+

where vpg stands for the filling fraction. Specifying to
the Coulomb interaction problem (¢ = 1) in two spatial
dimensions, we next make use of the principle of F in-
variance and formulate an effective action for the edge.
Introducing a change of variables Q = t~1Qot [10], we
now have [24] (g = t~1At)

Segtlg] = Svuilq) + 2mikC[q],

o y (16)
eSpui(d] :/ D[QO]eS,[t Qot]+SF[t™" Qot]
A%

Here S, is the same as S, with 0Ogy replaced by its un-
quantized bulk piece #. Recall that the symbol 9V re-
minds us that the functional integral is performed with a
fixed value Q¢ = A at the edge. It is important to notice
that the interaction piece Sr cannot be left out since it
affects, following Eqs. (12)-(14), the renormalization of
the theory at T' = 0.

The definition of Seg[t] is precisely the same as the
background field methodology adapted to the Coulomb
interaction problem [1, 3]. The result is of the form

Sbuig] = S.[q] + Skldl, (17)

where the primes indicate that the parameters o.., 6
and z are replaced by renormalized ones, o.,,, §' and 2’
respectively, which are defined for system size L.

This leads to the most important statement of this
Letter which says that, provided a mass is generated for
bulk excitations, the renormalized theory o, = 04,(L),
0" = 6(L) and 2' = z(L) should vanish for large enough
L, i.e. the bulk of the system is insensitive to changes
in the boundary conditions except for corrections expo-
nentially small in L. Under these circumstances Seq[q]
reduces to the action of massless chiral edge excita-
tions [4, 5]. The integer k equals the number of edge
modes and is now identified as the quantized Hall con-
ductance.
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These results describe the strong coupling “integer
quantum Hall” fixed points (Figure) that were previ-
ously conjectured on phenomenological grounds. From
the weak coupling side, a detailed analysis of Eqgs. (16)
and (17) leads to the following expressions [1] for the
renormalization group functions

dgzz — 4o,
dlnp =B, = Bg(022) + Dog,e” "= cos,  (18)
dO'zy 2 _—270ga o
dinp = B¢ = Do e siné, (19)
dlnz —27o
dlop P 7 V2 (022) + Dyopae™™== cosf.  (20)

Here, D ~ 13.58 and D, =~ 2.26 are determined by
the instanton determinant [24] and 32 and ~? are the
perturbative results that recently have been extended to
two-loop order (A ~ 1.64) [3, 6]

2 44

ﬂg(azz) = -+ ’ (21)
™ Oz
1 18 + 72
2 = — 22
7z(022) MOy  6m202, (22)

In summary, there is now fundamental support, both
from the weak and strong coupling side, for the scaling
diagram of the integral quantum Hall effect [1].

e Finite T. At finite T the infrared of the system is
controlled by the interaction terms Sy and Sy. In this
case one must go back to the original theory (Egs. (3)-
(7)) and obtain the transport parameters from linear
response in the field a, [3]. Specifying to the ap = 0
gauge as well as V-a =V x a =0 we can write

Sesla]=T Z /dr Un [04,0i5 + 0py€ij] ai(Vn)ai(—vn),

n>0

(23)

where the expressions for oj; are known as the Kubo
formulae [3]. We stress that these expressions are ex-
actly the same as those obtained from the background
field procedure, 0y, = 0,.(L) and oy, = k + 6(L)/(27)
(Egs. (17) and (18)-(20)), provided Sey¢[a] is evaluated
at T = 0 and with @ = A at the edge [2, 3].

The scaling results at finite 7' generally depend on
the specific regime and /or microscopics of the disordered
electron gas that one is interested in. Here we consider
the most interesting cases where § =~ +7 and 0 ~ 0 re-
spectively. The first case is realized when the Fermi level
passes through the center of the Landau band where the
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electron gas is quantum critical and the transition takes
place between adjacent quantum Hall plateaus [7]. Pro-
vided the bare parameter o, of the theory is close to
the critical fixed point o}, at o,y = 1/2 (Figure) the
following universal scaling law is observed [7]

8(X)
o
Uzy—k-i- o

Ozp = 02z (X), (24)
where X = (2T) *Avp. Here Avp is the filling frac-
tion vg of the Landau levels relative to the critical
value v} which is half-integer. The correlation (localiza-
tion) length & of the electron gas diverges algebraically
¢ o |Avg| '/”. The critical indices x and v are a
major objective of experimental research [19-22] and
the results have been discussed extensively and at many
places [1, 4, 6, 14].

Next we consider § ~ 0 which is entirely different.
This happens when the Fermi energy is located at the
tail end of the Landau bands corresponding to the center
of the quantum Hall plateau. The bare parameter o, of
the theory is now close to zero [4]. This means that the T
dependence is determined by the strong coupling asymp-
totic of the renormalization (8, o, — 0). Notice that
the v, function (Eqgs. (18)—(20) and (21)—(22)) indicates
that the singlet interaction term Sg eventually renders
irrelevant as compared to the Coulomb term Sy (with
U~'(g) = T'|q|) which, as we mentioned before, is not
affected by the quantum theory. One now expects Sy
to become the dominant infrared regulator such that the
scaling variable X in Eq. (24) is now given by X = TT¢.

This asymptotic limit of the theory can be identi-
fied as the Effros—Shklovskii regime of variable range
hopping for which the following result is known o, =
= 044 (TT€) = exp(—2/+/TTE) [14]. We therefore con-
clude that the dynamics of the electron gas is generally
described by distinctly different physical processes and
controlled by completely different fixed points in the the-
ory.
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