Pis'ma v ZhETF, vol.6}, iss.], pp.48 - 53 © 1995 January 10

TOPOLOGY OF VORTEX-SOLITON INTERSECTION:
INVARIANTS AND TORUS HOMOTOPY

Yu.G.Makhlint, T.Sh.Misirpashaev*

* Landau Institute for Theoretical Physics RAS
117334 Moscow, Russia
*Isaac Newton Institute for Mathematical Sciences,University of Cambridge

Cambridge, CB3 OEH, U.K.

Submitted 24 November, 1994

We discuss topology relevant to the intersection of nonsingular 4w-vortex lines
with a planar transverse soliton in superfluid *He-A which was recently observed
in Helsinki. The essential part of the problem consists in finding a homotopy
Aaasification of mappings 52 x §' — $% and S' x §!' x §' — $2. This classification
is achieved, and an analytical expression for the topological invariant is found,
amalogous to that for the Hopf invariant H = (1/4nz)fv, rot v,dV of mappings

s 52

Many different types of topological defects have been suggested in condensed
matter with broken symmetry, a number of them having been experimentally
discovered by now. A perfect mathematical tool for their investigation is given by
homotopy theory that have thus been extensively used in physics {1, 2]. In many
important cases it is sufficient just to know the order parameter space and be able
to calculate its homotopy groups =,. In particular, knowledge of homotopy groups
permits to classify possible free monopoles, vortices and interfaces, defects that
appear ubiquitous in the Universe [2, 3]. Classification of defects caused by some
sort of boundary conditions or confined to other defects occurs more laborious,
leading in the simplest cases to relative homotopy groups [4, J5].

Recently an experimental evidence for coexistence of planar soliton with piercing
it nonsingular 4w-vortices in rotating >He-A was reported [6]. The purpose of
the present article is to extend the discussion of underlying topology, including
analytical expressions for topological invariants. We will show that the essential
part of the problem consists in topological classification of mappings S? x S — S2
and S! x S x §' — §%. The latter set of mappings is sometimes called “torus
homotopy group™ of 2-sphere T>(S?) and alleged to be unknown [7], though
actually it was first found by L. Pontrjagin in 1941 [8].

Geometry of the proklem. Let Z be the axis of rotation of the vessel containming
3He-A. Vector d of magmetic apisoizopy is confined by the magnetic field to
horizontal plame d L Z. PFuazthermore, we can safely assume that d = dp is
everywhere comastamt which reduces the order parameter to s orbital part ¥ =
ey + ey, where e; L ey, €] = el = 1. This simplification dees not alter the
topological dassification becamse d-vector has no net winding neither imside the
soliton mor imside vortices under consideration [6]. The remaining manifold of
degemerate states is thas SO3. Tiny spin-orbit interaction temds to fix the
vecior of orbital amisciropy | =e; x ey to +dg, restricting the degemeracy space
to S x Z;. Nontriviality of relative homotopy groups 72(S03;S1x2Z,2) = Z and
71(SO03;S*xZ;) = Z, gives rise to a possibility of non-singular 4x-vortices and
solitons [4, 9]. In the geometry of Helsinki experiment magnetic field and vortices
are oriented along 7 while the soliton plane is perpendicular to £ which leads to
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a particular type of soliton called ‘twist soliton [10]. The vector } rotates from dg
to —dp inside the soliton:
Isol = Udey (1)

where U, is the matrix of rotation in zy-plane by the angle a(z) increasing from
0 to m. The whole sphere is swept by the vector 1 in amy horizontal eross-section
of a 4m-vortex, while far from the vortex 1 becomes constant. A possible ansatz
is as follows:

1=U, (ﬁ sin(r) + cos n(r)[Z sin(¢ — po(z)) — £ cos{p — wo(z))].), (2)

where r, ¢ are polar coordinates in zy-plane; 7(r) varies from n(0) = —7/2 to
n(oo) =n/2, po(z) is some function of z, and we have chosen d¢=74.

Consider loci C;, C| of points at which the vector I equals +Z respectively.
Depending upon the function @o(z) they interlace or do not interlace (Fig.1). This
notion of interlacing has a topological sense, and the distinction between these two
possibilities can in principle be resolved in the experiment. Here we have implicitly
supposed that the values I(r) = +Z are in generic position, so that C; are C; are
closed curves, possibly made of several disjoint links. The same assumption will
be made below when we will also be considering loci €}, of points r at which
I(r) =1p with arbitrary lo.

r -
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L _4

Fig.l. Topology of two different structures
of a vortex crossing soliton (before duplica-
tion). a -Loci Cy and C| at which I=+3
do not interlace; b — interlace

k=0
a b

Formal description: low rotational velocities. Following [6] we duplicate the
soliton, which gives us periodic boundary conditions in z-direction, and embrace
the region of intersection by a large cylinder (Fig.2a). I the density of vortices
in the vortex lattice is small, which corresponds to low rotational velocities, then
each individual vortex is well-defined, permitting us to impose constant boundary
conditions at the boundary 8D? of any cross-section D? of the cylinder. With
constant boundary conditions each cross-section* effectively becomes a 2-sphere S2,
and the whole volume inside the cylinder should be thought of as a direct product
S$% x S of this sphere and Z-axis circumference. In-addition, the vector 1 on the
lateral surface of the cylinder is comfined to zy-plame, as it should be for the
soliton structure, restored far from the vortex. As the density of vortices incre-ses,
the vector I starts te deviate from zy-plane. Finally, at large densities (large
rotational velocities) the intervortex distance and the size of an individual vortex
become of the same order. We can no longer assume constant boundary conditions
in cross-sections, but rather periodic ones. Each cross-section of the cylinder
effectively becomes a torus S! x S!, and the whole cylinder will be S! x S! x S?*.
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Note, that from three degrees of freedom of ¥ =e, +ie; we are considering only
two carried by 1. We are prompt to do this, because periodic boundary conditions
are imposed only on 1 [11], and as a matter of fact one can show that the third
component does not alter the topological classification.

Fig.2. @ - We embrace the region of
the vortex-soliton intersection by a cylin-
der. Periodic boundary conditions are
imposed along z. Sketched is the case
with N=1, m=1  C* is an arbi-
trary vertical generatrix of the lateral
surface. For low density of vortices 1
is constant at each boundary circumfer-
ence 8D2, therefore the cylinder effec-
tively becomes S2 x §'. b — For higher
densities boundary conditions on 8D2
are periodic, and the cylinder becomes
S' x §' x S'. Represented is the case
with zero additional invariants m;, my

Now let us start the classification of possible structures. We will express
invariants in terms of the superfluid velocity v, = (x/27)e;Vez, related to the
vector 1 by Mermin—Ho relation [12]

rotv, = (n/41r).€;,-kl,~ Vlj x Vi. (3)

Here x=wh/m3 is the circulation quantum for superfluid 3He. First, consider the
case of 1 confined to zy-plane at the boundary of the cell. This case corresponds
to the classification of all mappings of pairs (D? x §;8D? x S) — (5%;8%), i.e.,
the mappings D? x S* — S%, r — I(r) that map the boundary 8D? x S' of the
cell to the equator S! of l-sphere. We restrict ourselves to the case in which
the boundary 8D? of a cross-section of the cell is not wound over the equator
by the mapping 1(r) (this means that the corresponding mapping dD? — S! is
topologically trivial). This is the case for both constant (S?) and periodic (SxS?')
boundary conditions. In this case the distribution of the vector 1 in the cell is
described by three integer topological invariants:

1) the number N of 4=-vortices inside the cylinder, (usually N =1), given by

Ve $ vidr, (4)
aD3
where the integral is taken along the boundary of a horizontal cross-section;

2) the algebraic number m of solitons before duplication (i.e., the number of
solitons with a given direction of twist minus the number of solitons with the
opposite direction of twist) that shows how many times the vector 1 goes around
the equator of the sphere as r goes along any vertical generatrix of the lateral
surface of the cylinder;

50



3) the linking number k of C; and C|.

Numbers & and m correspond to that introduced in [6]. The linking number
k is analogous and closely connected to the usual Hopf invariant of mappings
S® — 82 given by H = (1/4k?%) [v,rotv,dV [13, 1]. It turns out that the
expression for k in terms of the superfluid velocity suggested in [6] is valid in
this case. For arbitrary N it takes the form:

1 N
k= e /v, 10t v, dV — ﬂ%vsdr, 5

C*

and contains an additional integral over an arbitrary vertical generatrix C* of the
lateral surface (Fig.2a) of the cell.

Intermediate rotational velocities. The vector 1 is no longer necessarily horizontal
nor constant at the boundary of any cross-section, the only restriction being that
it is not vertical (1 +2). Boundary conditions become periodic with vortex lattice
periods. Nevertheless, constant boundary conditions will also be considered as a
subcase that might occur relevant in some other physical situation. For constant
boundary conditions this case is equivalent to the previous one from the topological
point of view, i.e., mappings are described by indices N, m and k. Under periodic
conditions two more invariants mj, m, arise that are winding numbers of the
horizontal projection of the vector 1 along two non-parallel sides of the boundary
8D? of a unit cell of the lattice (Fig.2b). In order to give analytical expressions
for k we need the notion of the area enclosed by a contour C on the l-sphere.

This notion is apparently ill-defined. Still one can take any unit vector n such
that C does not contain n and define the area Arealf with respect to this vector
to be — [.(1+(In))d¢/4n, where ¢ is the longitude (the angle of rotations around
n). It gives the area swept by the arc of the great circle connecting —n and 1
that does not contain n (with the orientation taken into account). One can show
that this quantity does not depend on n as it moves over the sphere unless it
crosses C. At this moment the integral changes by an integer. It follows that
only the fractional part of the area enclosed by C (in the units of the whole
area of the sphere) has an invariant meaning (we designate this fractional part
Arealc). Let C* be a contour in the real space, and 1(C~) its image on S%. We
will denote Areall(c,) by Arealc- as well.

After these preliminaries we can write down a more general formula for k:

e (6)

k= L}{vsdr—- ﬁfv,dr-%—NArea,
2k 2

IR cr
where | denotes the south pole. An analogous formula with | and | interchanged is
also valid. For 1 lying in the zy-plane at the boundary Area é.. = —Area L. =m/2.

Let us also mention the following relation for the circulation of the superfluid
velocity along C| averaged over the whole sphere of vector I:

<¢f v,dr> = ilE / v, rot v,dV. (7
1

For the case of the vector 1 horizontal at the boundary the integral over Cj in the
left-hand side is constant on the northern and south hemispheres, which permits

to link (6) and (5) with the aid of (7).
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Here is another equivalent formula for k, through [v,rotv,dV (under the
assumption 1% +Z at the boundary):

k 4—n2-/v, rot v, dV — —K—fv,dr + 5 <:f v,dr> + N (Area|c. + Area) .) . (8)
C‘ -

Here C* is a fixed vertical generatrix of the lateral boundary, C** is an arbitrary
vertical generatrix of the boundary and the angle brackets denote the averaging
over all such generatrices. To derive (8) the use was made of the periodicity of
v, - xr [11].

Large rotational velocities. Suppose now that the angular velocity is considerably
large and 1 may take arbitrary values at the boundary. The previous classification
fails as winding numbers m, m;, m2 of the vector 1 cannot be defined. Depending
on whether we assame constant or periodic boundary conditions we should now
classify the mappings S% x S* — S? or S! x §' x ' — §? (Fig.2). It can be
shown (first dome in [8]) that a mapping S? x S* — S? is characterized by a
number N (the number of quanta or the degree of the mapping of horigontal
cross-section to ‘l-sphere), and, for given N, by an element of Z;y (i.c., integer
module 2N). For the mappings in the classes discussed before this element is
given by I=k+mN {(mod 2N). This means that configurations with the same N
and k+mN (mod 2N) are topologically equivalent if we allow 1 to take arbitrary
values at the boundary. In particular, for N =1 the invariant is k+m (mod 2),
i.e., there are two {ypes of configurations of the intersection of 4x-vortex with a
soliton. For example, the configurations m=k=1 and m=1, k£ =0 mentioned in
[6] are topologically different even in the limit of large angular velocities (this is
true for periodic boundary conditions as well, see below). For N =0 the invariant
is an integer k: a localized defect in a uniform field of vector 1 (m =0) or inside
a twisted soliton {m =1) is characterized by the linking number of two loops q,
and Cj .

Fixl’a.ny lo such that the field of the vector 1 does not take the value 1y at
C* (i.e., at the boundary). Then the invariant I is given by

i N 1,
i 7 f v,dr — va,dr—f— NArea|®l. (mod 2N}, )
clo C*
or, in terms of [v,10tv,dV:
1 N
I= m/v, rot v,dV — e fv,dr—# 2N Areajc- (mod 2N). (10)
,C.

Mappings S! x S* x S — 52 are described in general by three integers N, Ng,
N3 which show how many times three different faces of the cell cover the l-sphere,
and by an element of Zy.ccn(w,.¥,,n,) Where GCD denotes the greatest common
divisor of N’s. It follows, however, from periodicity of v, —~ Q2 x r [11] that for the
configuration in question only ome of three indices N; is nongero, correspoanding to
horizontal face. We denote it by N =GCID(N,D,0). The formula for the invariant
is as follows (cf. (8)):

1 N N 4 ‘ J N
I= ~4?/v, rot v,dV ~ - fv,dr + I (tf v,dr> + 2N Areales (mod 2N). (11)

Fodd
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To conclude, we have discussed the topology of the intersection of a lattice
of 4r-vortices and a soliton in 3He-A and derived the analytical expressions
for the proper invariants in terms of the distributions of the vector 1 and the
superfluid velocity. We have proved using these invariants that the two competing
configurations considered in [6] remain topologically different under any rotational
velocity. The results also apply to other media with broken symmetry described
by a 3D vector, like Heisenberg ferromagnets, subjected to periodic or mixed
periodic-constant boundary conditions.
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