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The variational approach to analyze the nonlinecar magnetochydrodynamical
(MHD) stability of ideal plasmas in magnetic fields of toroidal topology is proposed.
The potential energy functional used as Lyapunov functional is expressed in terms of
complete set of independent Lagrangian invariants, that allows to take strictly into
account all the restrictions inherent in the varied functions due to MHD dynamic
equations. It is shown that there arc no physical MHD perturbations being able to
grow if the linear MHD stability is provided.

Problem formulation

It is well known that the plasma stability problem does not be exhausted by the
most conventional linear theory which cannot describe the perturbations growing
slower than expomentially {1]. To analyze nonlinear plasma stability in frames
of ideal magnetohydrodynamics (MHD), it is very attractive to use Lyapunov
approach, choosing the plasma potential energy

W= /d3 (———+%2-> (1)

as the Lyapunov functional to be varied, because its time derivative cannot be
positive due to the total energy conservation resulted from ideal MHD equations
(see, e.g.[2]). However, to avoid the possible narrowing the class of analyzed
equilibria and the obtaining the more hard stability criterion than it is necessary,
the certain restrictions on the varied functions have to be taken into account.
Such the restrictions appear from the initial set of dynamic equations:

(0:+ VV)p+pdivV =0, (2)
p

@+v9)E =0, 3

8B =curl[V x B] . (4

The values p and p denote the pressure and the density of plasma which moves with
the velocity V in the magnetic field B, v is an adiabatic exponent. The quantities
like p satisfying the continuity equation (2) are called Eulerian invariants, while
the quantities like p/p”, which move together with plasma, are called Lagrangian
invariants.

The above mentioned restrictions can be added to the functional (1) as a set
of Eulerian invariants. Since the equations (2)-(4) (with the motion equation) are
known to have the infinite set of invariants, the earlier attempts to modify the
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functional (1) by adding an incomplete set of invariants led to the narrowing the
class of equilibria (see, e.g. [3-4]). Below the adequate procedure that allows to
take strictly into account all the restrictions inherent in the varied functions under
the integral (1) due to equations (2)-(4) is described.

Let us discuss the difference between our approach and linear theory more in
detail. Linear MHD stability is also known to be analyzed by the similar energy
principle [5], that declares that for linear instability it is necessary and sufficient
to find a small trial plasma displacement ¢ providing a quadratic form &2W[¢ , €]
to be negative, when the second variation of W has to be calculated using the
Egs.(2)-(4) linearized over €. The point to apply a nonlinear theory is that even
there is no such linearly unstable perturbations, nevertheless, there always are
some “neutral” perturbations £, which do not change the above quadratic form:

8Wikn €nl=0 .

Linear theory cannot say anything definite about the growth rate of such displace-
ments. It can be determined only from the nonlinear analysis of the behavior
of the potential energy in an equilibrium vicinity extended along those neutral
displacements. Such an analysis has to be distinguished from investigations of
nonlinear stages of linear instabilities.

Lyapunov functional construction

First of all some obvious properties of the invariants which result immediately
from the equations (2)-(4) can be formulated:

a ratio of two Eulerian invariants is a Lagrangian one;

an arbitrary function of Lagrangian invariants is a Lagrangian invariant too;

if B satisfies the Eq.(4), the quantity BV« is an Eulerian invariant for any
Lagrangian invariant a.

Let us introduce the system of independent coordinate {u,v, A}, whose Jacobian
J =Vu[Vr x VA] #0 everywhere in plasma for a given moment of time. It is
always possible "to glue” those coordinates to the plasma, so they will obey the
Eq.(3), that means they will be Lagrangian invariants. The Jacoblan can be easily
proved to be an Eulerian one [6], therefore, it cannot be equal to zero at any
time. Using the Egs.(2)-(3), the Eulerian invariant p'/” can be constructed. As
follows from the above mentioned invariant properties, it can be expressed through
the Jacobian:

p=J7T(u,,)) , (5)

where function II specifies the pressure equilibrium distribution.
An arbitrary magnetic field satisfying (4) can be expressed through Lagrangian
coordinates as

B=[Vux VL4 [Vvx VAIM4+ [V x VyN

where the functions £, M, N of Lagrangian coordinates have to obey the single
condition L+, M+8,N =0 to provide divB =0. The closed magnetic field line
system can be also described by this formula putting two functions (e.g., M and
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N) be equal to zero identically. Considering toroidal plasma only, let us choose
the coordinate p as a magnetic surface mark:

BVu=0, (6)

that simply needs to put M =0 in the above general formula. Being satisfied at
the initial moment, the Eq.(6) remains be valid at any time. Moreover, from our
magnetic field representation follows immediately that the topology of magnetic
field cannot be damaged during the time evolution (4). It should be mentioned
that for any toroidal nested surfaces the coordinates {u, v, A} can be redefined
to get the known Kruskal’s flux representation for magnetic field [7):

B = [Vii x (¢(8) V5~ V3)] , (7

where {7 ,:\} are analogs of poloidal and toroidal angles in tokamak respectively,
and g¢(z) is the ratio of toroidal and poloidal fluxes (“safety factor”). That
representation is also valid at any time (not only in equilibrium), and is often
more suitable for use due to its simpler form (tildes will be omitted below).

Having substituted the explicit representation (5), (7) into the potential energy
(1), we find that our functional (1) is only expressed through Lagrangian invariants
u, v, A without additional dependence on time. Now we may vary our functional
over the coordinates pu,v, A independently, and there are no additional restrictions
which we have to take into account.

First and second variations
Let’s introduce the vector £ by the relations:
bu=—EVu , bu=—fVi , EA=—¢VA (8)

where § denotes the corresponding variation. Having found the variations of the
Jacobian 6J = —divJ€ , we can easily obtain the variations of the pressure and
magnetic field:

bp=-~¢Vp—ypdivE , éB=culllf x B] , 9

that coincides precisely with linear variations, if the formally introduced vector §
(8) plays a role of a linear plasma displacement. The Egs.(9) allow to derive the
first and the second variation in the conventional form

W / Pre(Vp + B x curlB]) |,
W~ / Pr((6B)? + £[6B x curlB] — 6pdive) , (10)

where 6p and 6B are given by Eq.(9). Here and below only the contributions
of integrals over the plasma volume into potential energy variations will be
considered for a brevity. The contribution of surface integrals results in the
conventional conditions of plasma boundary equilibrium and transversality. Due
to an arbitrariness of £, the condition éW = 0 results in the general plasma
equilibrium equation:

Vp+[B x curlB] =0 . ‘ (1)
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It should be mentioned that in [3,4] only the narrow class of equilibria was
obtained instead of (11) due to an incomplete accounting the consequences of
Eqs.(2)-(4).

The second variation §2W (10) coincides with a conventional energy principle [5]
derived from the linear theory, that is obvious due to self-conjugation of quadratic
functional. However, the principal difference between a linearization procedure and
our approach leads to a different treatment of the results obtained.

Neutral displacements

Contrary to the linear theory our approach operates with the nonlinear energy
functional (1) resulted from the precise nonlinear equation of motion. Furthermore,
the proposed expressions (5), (7) for plasma pressure and magnetic field through
the independent Lagrangian invariants represent all the relations between the
variations of p and B due to nonlinear dynamic equations (2)-(4). It means that
the higher order variations of the functional (1) can be also taken into account.
Indeed, if 62W > 0 for any €, it does not still provide a stability, because there
always are some nontrivial neutral displacements {5 making 62W]£N = 0. These

neutral displacements satisfy the Euler equation
Vép + [6B x curl B] + [B x curléB] =0 (12)

which was taken without fixing any norm of displacements considered. Displace-
ments £, satisfying (12) may be distinguished into three classes:

L e n70i  Evnl 70 (= Va/|Vi)

5
S denotes the boundary magnetic surface). Such displacements correspond to
global equilibrium deformation (a case of near equilibria), and can be suppressed
by external feedbacks, or something similar.

2. v nF0 {N-n’ =0 .

Such displacements don’t change the f:ertain equilibrium and correspond to the
marginal stability situation, when the plasma confined is at the instability thresh-
old. This situation is obvious to can be broken down by week changes of
equilibrium parameters, therefore, it has to be out of our interest.

3. £y -n=0 everywhere.
Such displacements can take place for an arbitrary equilibrium, therefore, they
have to be analyzed at first.

Looking for an explicit form of those displacements £p, let us multiply (12)
by B, we find 6BVp = —BVép = BVdivéy =0 . As €5 n =0 , hence,

divEy =0= 6p’ =0 and éB| =0, that results in the following expression

N N
for €

§n =a(p) curlB +b(p)B , (13)
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where a and b are arbitrary functions (although for rational magnetic surfaces
the form (13) has to be modified, however, this fact cannot change the final
conclusions given below).

Now, following our logic, we should investigate the question, are those neutral
displacements able to give a contribution in the higher order variations of W7

Third and fourth variations

The reason to calculate higher order variations is that the neutral displacements
may have larger amplitude then other ones. Therefore, if their contribution to
the 63W is not zero, .it will be able to compete with 62W calculated over the
significant displacements €, = £ — £ (different from neutral ones). The volume
part of

8W =~ /dsr{ézf(Vp-f- [B x curlB}]) + 26£6(Vp + [B x curlB])
+ ¢(Vé*p+[6°B x curlB] + 2[6B x curléB] + [B x curlézB])} (14)

has to be calculated using that
6¢-Va=¢V(¢Va) (15)

where a = {u,v,A} denotes any independent variable. Using the simple relations
following from (15) one can find

6N€Nvﬂ'=0 ’

[6n¢y B] =0, (16)
curl| curlB x £4]=0

for §néy : On€y - Va = ExyV(EnVa). Substituting (16) into (14) we find that
the biggest part of §°W ~ ||Ey]|® is canceled identically, and the term of order

~ I INEN I is
63W[£N,£N,€,,]z/3'yp dive, div(dyéy) d3r.
This term is able to compete with §2W ~ [|¢,]|? if
Exll ~ VIIEI] - (17)
The ordering (17) requires to calculate also the fourth variation term ~ |{¢p][*:
F Wik, ex € bl ~ [ 310 divi(onen) &r.

Summing all the terms of the same order, we find the change of Lyapunov
functional near equilibrium as

1 2 1 3 1 4
AW =5 8W + £ EW+ o 8Wr

2
~ —;-/ (6B2 +  €[6B x curlB] + € Vp div€ +vp div2(£ +—;— 6N€N))d3r.(18)
pl
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This formula differs from the expression for 1 62W by a correction in the last

compressible term. Due to (16) that correction can be canceled by redefining €
without any change of other terms of (18).

Finite neutral displacements

The result of the previous section can be interpreted as a next order correction
of the neutral displacement. It means that real neutral displacement has a form:

En =& +En HEN -, (19)

where £g, is defined by (13), { —-——6NEN, etc. It is just a displacement that
doesn’t change pressure and magnetic field with counting terms of order (17). The
counting higher order variations results effectively in the similar (18) corrections
to the quadratic functional % 6?W , corresponding to the next order term in
expansion (19). Looking for finite neutral displacements instead of infinitesimal
expansion {19), one can find the following coordinate transform

a={yr,A} — a={apA}: (20)
b = pb;
F(u,v,A) = F(a,p, ~) where
F(ﬂ')%/\) = Fl(,u' /JO ,u,(,A—%—q( _V))+F2(#w’\—qy) )
0

and Fp, Fy - arbitrary functions (F; has only to provide the partial derivatives of
F be physical functions, 2n-periodic of angular-like variables v, A; such a function
F, can always be found), Jo - Jacobian in an equilibrium state, which determines
the function Il in (5) as a ratio po(u)/Jq (g, v, A) . It can be easily proved that the
transform (20) provides the following relations between initial (J = Vu[Vy x V1))
and final (J=Vi[Vi x V1]) Jacobians

= J
=7 o(zf.t:./_\)

JO(“‘r v, A)
and B=B ,5=p due to the definitions (5), (7). Hence the transform (20) does
describe the nontrivial finite neutral displacements whose infinitesimal expansion

(19) has been found earlier.
Discussion

The explicit representation of pressure (5) and magnetic field (7) by a set
of independent Lagrangian invariants allowed us to vary plasma potential energy
strictly taking into account all the 1elations followed from MHD equations. That
variational procedure resulted in general equilibria and stability criterion looking
the same as in linear stability theory. For any equilibrium there are infinitesimal
neutral displacements (13), which do not change potential energy to the second
order (10). These infinitesimal neutral perturbations are extended to the finite
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displacements. From the mathematical point of view, the presence of such finite
neutral displacements should be considered as instability, because at least one of
coordinates {v,\} is able to grow infinitely. However, slow motion along such
neutral directions changes no macroscopic plasma parameters. There is no coupling
those neuntral displacements of arbitrary amplitude with any others. Therefore,
from a physical point of view they correspond to coordinate relabeling and cannot
be considered as a real inmstability to be interested. In other words, contrary to
conclusions of previous papers (e.g., [3,4]) there is no nonlinear MHD instability
for any static equilibria when the linear plasma stability is provided.
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