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We consider the trapping of atoms by sub-Doppler rectified dipole forces in the
bichromatic superlattice that is formed as macroscopic spatial interference pattern of
two superimposed individual optical lattices differing in frequency and wavelength.
A simple model is presented for a three-dimensional calculation of the rectified
forces and for a semiclassical Monte-Carlo simulation of the trapping process. Our
results show that the macroscopic bichromatic traps created at the superlattice sites
are very promising for spatially compressing atomic ensembles released, e.g., from
a conventional magneto-optical trap.

In their pioneering work [1], Kazantsev and Krasnov first described an effect
underlying a new class of optical forces [2] exerted on atoms in near-resonant laser
light: for atoms in bichromatic standing-wave laser fields they predicted ’rectified
dipole forces’ that oscillate in space on a macroscopic scale greatly exceeding the
optical wavelength. They also pointed out potential applications to realize new
types of atom traps. Meanwhile, rectified forces have been experimentally observed
in a variety of different field configurations and rectification schemes, e.g. [3-5].

The aim of this Letter is to point out possible ways for constructing highly
efficient atom traps on the basis of the rectification effect. In contrast to the
work of Kazantsev and Krasnov we do not consider two-level atoms, but atoms
with a ground-state substructure, for which cooling [6] and rectified forces (7,8]
can occur in the sub-Doppler regime with very sharp dependence on the atomic
velocity [5,8]. We show that, in simple laser beam configurations used in recent
work on ’optical lattices’ [9-12], bichromatic light creates an additional superlattice
structure where rectified forces act together with usual polarization-gradient cooling
[6] to efficiently cool and confine atoms in an array of macroscopic traps.

In our theoretical model, adopting well-known concepts in laser cooling [6],
we consider atoms with a J =1/2 — J' = 3/2 transition in a one-, two-, or
three-dimensional bichromatic standing-wave laser field. We focus on lattices that
can be decomposed into circular (0*) polarization components without any -
light contribution [9-12]. The bichromatic light field is characterized by the
position-dependent 0% saturation parameters of the two frequency components
sz(r) = Iit,z(r)/I_gAT with Isgr = hwdy/6mc? and by the reduced frequency
detunings &2 = (w1,2 — wo)/v, where wo is the transition frequency and 2y its
natural linewidth. We treat the atomic motion semiclassically by considering
the motion along the light-shifted ground-state potentials in the so-called sub-
Doppler regime of low velocities (v < v/k), where the Doppler shifts remain small
compared to ¥ and contributions by the scattering force (Doppler cooling) can be
neglected. We furthermore assume large detunings (61,2 > 1), low optical saturation
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(sz(r)/éiz < 1), and a negligible effect of mutual light shifts (Gfa(r)/él,z <
62,1). This allows us to simply add up the individual light shifts as first order
perturbations in order to calculate the relevant ground-state potentials

e F p F(r
m- g (2GR B E0). o

Here the first and the second term result from the w; excitation of the m=+41/2—
m' = £3/2 and the m = +1/2 — m' = F1/2 subtransitions with Clebsch—Gordan
coefficients 1 and 1/4/3, respectively, and the third and the forth contribution is
due to the corresponding w; excitation.

We now make the central assumption that the intensity to detuning ratios in
the two field components are chosen to provide light shifts of about the same size,
but that one frequency component is much more detuned from resonance than the
other one,

|62] > [61]. 2)
Under this condition, transitions between the two ground-state potentials are
predominantly induced by the first field (w;) since the optical pumping rates scale
with G;ft /62. Thus neglecting the pumping effect of the second field (w;), the
transition rates for transfering an atom out of the potential U_ into U, and vice
versa can simply be written as

Ii(r)= 927" GE(r). 3)

The steady-state force exerted on atoms at rest in the bichromatic field can be

calculated as [6]
F(r) = ~TI_ (1) VU- (r) — L4 (5) VU4 (5), 4)

where Is(2)
+(r
L NEFS e %)
are the steady-state occupation probabilities of the potentials Uy(r).

In a usual, monochromatic optical lattice, where the maxima in the population
of a light-shifted ground state always coincide with the potential minima, the
steady-state force according to eq.(4) vanishes in an average over a unit cell of the
lattice. A wavelength-averaged force occurs only as a motion-induced effect, leading
to the well-known ’'Sisyphus’ cooling force in polarization gradients [6). In the
bichromatic field, however, optical pumping can preferentially populate locations
where the potentials have a certain slope. This effect, which obviously depends
in sign and magnitude on the slowly varying phase relation between the spatial
modulations of optical pumping and light-shift potentials, is the basic mechanism
of dipole force rectification.

As a simple 1D example, we now consider an extension of the well-known lin-
1-lin polarization-gradient cooling scheme [6] in a bichromatic pair of counterprop-
agating laser beams with orthogonal linear polarizations. The counterpropagating
traveling-wave components of same frequency have equal intensities, so that each
of the two frequency components can be decomposed into a ot and a o~ standing
wave with position-dependent saturation parameters

sz(z) =g1,2 [l £ cos(2ky 22)], (6)
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where the g;; represent the position-independent saturation parameters of the
single-frequency traveling wave components and k12 = wyz/c are the two wave
numbers. For this one-dimensional case the steady-state force according to Eq.(4)
can be calculated to

Fy(2) = %n», cos(2k; z) kl‘g—:sin(Zklz) + kg%:—sin(Zkgz) . (7

The slowly varying rectified part F,..(z)= (Fz(2))x is then obtained by averaging
over the optical wavelength,

|
Freat(2) = —zhkzy 2 sin(26k 2) (8)
3 .2}
with 6k =k; — k;. The rectified force oscillates in space with a macroscopic period

L =n/|ék|, and shows restoring character around z=L/2 with a spring constant
K= 2ﬂ'hkz7gg/(3|62|) x L1,

potentials U, / hy

position z

Fig.l. Bichromatic optical superlattice in 1D for g; /6 = ~1, g1/6; = ~0.7, and
ky/ky = 20/21: (a) Light-shifted ground-state potentials over a full rectification
period L. (b) Dot sizes illustrating the occupation probabilities in .the vicinity of
z=025L, 0.5L, and 0.75L, where the rectified force is positive, zero, and negative,
respectively

These results are illustrated in fig.1: the potential curves Ui(z) in (a) display
the interference structure of the two different light-shift contributions, where the
envelope of the modulations reflects the rectification period L. The spatial
dependence of the occupation probabilities is shown in (b): for z = 0.25L (2 =~
0.75L) one sees a preferential population of the negative (positive) potential slope,
which leads to a positive (negative) rectified force. At z ~ 0.5L, i.e. in the
trapping center of the superlattice, one recovers the situation of usual polarization-
gradient cooling [6]: for atoms at rest, the maximum population of the light-shift
potentials is found at their minima and thus, for moving atoms, the Sisyphus
cooling mechanisms acts in the same way as in a monochromatic field. Here,
the partially destructive interference between the two light-shift contributions is of
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advantage for the final cooling, because the low modulation depth of the potentials
leads to a low limit temperature [6].

We have studied the dynamics and the equilibrium of the cooling and trapping
process in such a superlattice site by performing a 1D semiclassical Monte-Carlo
simulation based on the above equations, where the atom performs a classical
motion in a light-shift potential between random quantum jumps transfering it
from one ground state into the other. We also include the heating resulting from
the photon momenta transfered in cycles of absorption and spontaneous emission.
For the atom we take the parameters of 133Cs, transition wavelength A =852nm
and linewidth 2y =2x x §.3MHz, but for simplicity we keep the assumption of a
J=1/2 - J'=3/2 transition. For the first field component we choose g =25 and
6, = —25, similar to a usual monochromatic optical lattice, and in order to obtain
a rectification period L =1mm in the range of main experimental interest we take
6, = —56575 for the second, far off-resonant field. We set go = 0.8]6;| = 45260
(traveling-wave intensity ~500mW /mm?), which produces a light-shift that is 20%
less than the one induced by the first frequency component. The potential curves
then look similar to the ones in fig.1(a) with the exception that mow L/X is on
the order of 1000. As initial conditions for the numerical simulations, we choose
parameters typical for a standard magneto-optical trap, assuming a Gaussian
position distribution with a 1/e-width of 0.5mm and a temperature of 100 uK.
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Fig.2. Result of a 1D Monte-Carlo simulation for the spatial equilibrium distribution
in a bichromatic superlattice trap, performed with 4000 atoms. The solid line is a
Gaussian fit to the data

Under these conditions, the results of our 1D simulation show a rapid spatial
compression which completely reaches equilibrium after only 30ms. We then
find a temperature of T = 10 uK, as expected from the depth of the light-shift
potentials in the trap center [6], and, most importantly, we observe a remarkably
sharp spatial equilibrium distribution with a 1/e-width of Az=9.8 um (see fig.2),
which corresponds to a spatial compression of the initial distribution by more
than a factor of 50. From these simulation results an effective spring constant
of the trap can be calculated as x.py =8kpT/Az? = 1.2 x 10717 N/m, which is
close to the idealized spring conmstant x = 2.1 x 10~ N/m derived from eq.(8);
the minor deviation is readily explained by the sharp velocity dependence of the
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rectified force [8]. This result demonstrates that the rectified force calculated as
a wavelength average for atoms at rest contains not only qualitative but also
important quantitative information on the macroscopic confining properties of the
bichromatic light field.

In order to give an outlook on bichromatic optical superlattices in more than
one dimension, let us now consider a simple and illustrative 2D example: In
extension of [9] we consider two superimposed bichromatic standing waves in the
z —y plane, one along the z-axis with linear polarization in y-direction, and
the other one along the y-axis with linear polarization in z-direction; the two
relative time phases between the pairs of standing waves of same frequency are
set to ;3 =90°. This configuration leads to an optical lattice structure with o%
intensities represented by the saturation parameters

G’fz(z, Y) =291, [cos(ky 2z) + cos(kl,zy)]z. 9)

A straightforward calculation by means of the above equations yields the rectified
force field
I (o) =045 hkry £ (SRS () ), (10
which is plotted in fig.3. One sees that macroscopic 2D traps exist with restoring
forces being of similar strength as in the 1D case. In the same way, we have also
considered a 3D bichromatic superlattice in extension of the four-beam configuration
described in [12] and found macroscopic traps with restoring rectified forces acting
in all directions. Since 3D optical lattice configurations [10-12] also provide very
efficient polarization-gradient cooling, we expect bichromatic light to allow a similar
spatial compression in each of the three dimensions as we have seen in our 1D
simulation. Corresponding 3D Monte-Carlo simulations are in progress.
We finally point out a possible variation of the above r-'.cme for alkali atoms.
When tuning one frequency component close to the D, line and the other one to
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the D; line, a superlattice structure can be created at moderate laser power with
a period determined by the fine-structure splitting of the excited state [13]. For
Li, Na, K, Rb, and Cs one then obtains rectification periods L = 1.5cm, 290 um,
87 um, 21 ym, and 9.0 um, respectively. The mesoscopic superlattice formed for Rb
and Cs atoms might be of particular interest for achieving an extremely fast local
density compression into the trapping sites before substantial losses by ultracold
trapped-atom collisions can occur.

Bichromatic optical superlattice traps are experimentally easy to realize and
may have a bright future as powerful tool for experiments on ultracold atoms at
high densities.
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