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Heavy ¢ interaction is studied at finite time T. Using the nonperturbative
background formalism the averages of Wilson loops to lowest order in g% are calcu-
lated and the generalized formula of perturbative interaction Vp(R,T) is obtained.
It is shown that for finite time, T < R,Vp(R,T) essentially differs from Coulomb
potential. Our analytical results are in good agreement with lattice calculations.

1. Static ¢g interaction V(R) yields the important information on nonpertur-
bative (NP) (confining) and perturbative forces between static quarks and their
possible interference. Moreover the effects of a, renormalization at small and large
distances can be conveniently formulated in a gauge invariant way in terms of
V(R) [1,2]. However, in physical applications the time duration T of ¢ interaction
is never infinite and one should rather consider finite-time interaction V(R,T) with
typical R and T for a given process, e.g. heavy quark c€ creation inside a nucleus
or a hadron. In particular, in lattice QCD one defines V(R,T) through the Wilson
loop of size R x T and the time T on the lattice is kept finite.

For our analytical calculation we use the definition of V(R,T) analogous to
the lattice one [3,4]

W(R,T —a)’

where a is a small (lattice) unit of length and W(R,T) =< W(R,T) > is the
average of the Wilson loop over vacuum fields.

Our purpose here is twofold. First, we shall derive the analytical expression
for V(R,T) using NP background formalism [2] and compare it with lattice data
[4]. Secondly, we carefully study the finite-time corrections to the static Coulomb
potential V(R).

2. In the formalism of NP background [2] one represents the total gluonic field
A, as a sum of NP background field B, and quantum fluctuations a, treated
perturbatively:

V(R,T)=—In

A,=B, +a,, (2)

where a, transforms homogeneously under gauge transformations. To calculate
Wilson loop average we keep the lowest order contribution in a,

< W(B +a) >=< W(B) > —g° < W®(a) > +0(¢*). (3)
For V(R,T) we have

<W(B;R,T)>

<W@(R,T—a)> | = (4)
<W(B;R,T—a> [1 —gzéy—L]

<W(B;R,T~-a)>

<W(BRT)> [1 - 2 SR
V(R,T)=-In

= VNP(R, T) -+ VP(R, T),
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= VNP(R, T) + VP(R, T),

where
< W(B;R,T) >

" CW(B;R,T-a) >

<WORT)> <WORT-a)>
<W(B;R,T)> <W(B;R,T—a)>

Vnp(R,T)= -1 (3)

ve(R,7) =7 { ©)

The “perturbative term” < W(z)(R, T) > in fact depends on NP background,
i.e. it contains gluon propagator in the background field, G,,(z,y;B), between
points ¢ and y on the contour of Wilson loop [2]

<WE(R,T) >p=< / $1Guv (2, y; B)padz,dy, >p (7)

where ¢; and ¢; represent the left and right parts of Wilson loop between points
z and y. As was shown in [5], in the limit of large N, the gluon line can be
replaced by a double fundamental line and then in (7) one obtains an average
product of two Wilson loops which are factorizing in this limit. As a result [2] for
large T, T > o~12, perturbative and NP contributions in < W) > also factorize.
The first factor of the product is simply
< W(B;R,T) > and the second - perturbative term-reduces to the free one-gluon
exchange at large T.

From (6) and (7) using results from Ref.[6] one can derive Vp(R,T) (Feynman
background gauge is taken for simplicity)

g*C dz,dy _
ey =+ [ [ Y 1o ®

Here C, is the quadratic Casimir operator.

In the range of small times, T < 0~/%, Eq.(8) is not valid and Vp(R,T) can
be found from the hybrid string interaction as it was done in lattice calculations
in [7]. Here we focus our attention only on times T > o~1/2.

3. The perturbative interaction (8) is the one-gluon exchange between heavy
quarks inside the Wilson loop which was studied analytically in [6]. It contains
the linear divergence (which gives the constant additive term to V(R,T)) and also
the logarithmic divergencies due to nonanalyticity of Wilson contour. Both have to
be regularized and for this purpose we introduce the minimal cut-off distance ¢ in
the integral (8). Introducing also lattice units, ¢t = %—, r= %, VoaV , e=ia,,
the expression (4) can be presented in the form:

V(T, t) = VNP(T, t) + Vo + Vp(r, t), (9)
where the perturbative part consists of three terms
Ve(r,t) =V, + Vi + Vieq. (10)

From (8) for a rectangular contour the regularization term is

Vrcg='2‘e;'4ln (t_—t-ié;é) , 6= (11)

|lm
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and V, and V; in (10) refer to the gluon exchange between space-like links and
time-like links respectively. From (8) we find

e [2 t—-1 2t t t-1 24+ (- 1)?
=——=1- — -~ 2
Ve - {rarctg " + - [arctgr arctg " ] +In s }, (12)
e [2r r 2r r [(t = 1)% + r2)¢2
=——q— - - t . 1
v, r{tardgt o R by Wl R Y PR (13)

The asymptotic behaviour of Egs.(11)-(13) at large t can be easily found; for
t>r > 1 one has

e 2r 4 2 442
"‘“"27{_7+?+t_2—§t_3+"'} (14)
e 4r? 1
[Oad =gty
e 4 2 1

It is interesting that for ¢ > r > 1 the first two corrections (of the order of 1/t
and 1/t?) cancel inside the perturbative interaction V,, so from (10) it follows

¢ ol 1 15
Vo -+ 0(5)t>r> 1 (15)

This cancelation explains why the asymptotic value V,(asymp) = —e/r is approached
rather fast: so for ¢ =r+ 2 the difference between exact value V,(r,t) and (—e/r)
is less than 20% but for t =r + 4 this difference is already less than 5% (see
table) for any r (r=2,4,6,8 were considered).

The perturbative part of interaction, Vyperi(r,t), as a function of time t=T/a for different fixed

distances r = R/a (e=0.302, §&=0.25).

tT15 20 (30 [40 [50 70 10 15 V,(asym) —
r — —2(t — o)
2 0.255 | -0.038 | -0.128 | -0.144 | -0.148 | -0.149 | -0.1507 | 0.151 -0.151
4 1.083 | 0.296 | 0018 -0.039 | -0.058 | -0.070 | -0.0746 | -0.0751 | -0.0755
6 1.892 | 0.604 | 0.128 0.024 | -0.012 | -0.037 | -0.046 -0.049 -0.0563
8 2.699 | 0.908 | 0.220 | 0.079 | 0.024 | -0.015 | -0.030 [ -0.035 | -0.03775

Nevertheless the most striking consequence of our calculations is following: for
values ¢t < r (any r) the exact value of V, (10) differs several times from V,(asymp)
and even has another (positive) sign for t < r ( see table).

As to NP interaction, it was studied previously [l] via cluster expansion and
for large r¢ it was obtained there

Vap(r,t) = (0a®)r+Co , r>t,. (16)

Here tg is the characteristic gluonic correlation length which can be found from
the quadratic field correlator. Lattice calculations of this correlator in the Ref.
[8] has shown that ¢, is smaller than o~'/? therefore in (9) we can use the
asymptotic behaviour (16) for Vyp(r,t).
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4. For comparison with lattice calculations [4] we consider V(r,t) defined by
formula (9) at fixed r and vary t in the interval 1.5 < ¢ < 15. The results are
presented in Figure by solid curve with the marked values of r =2,4,6.. The
lattice data from [4] are also shown by circles for r =2, diamonds (r =4) and
squares (r =6). From Fig. we can see good agreement between our analytical
calculations and the available lattice ones.

V(rt)
14 L_ Non-smeared wilson loops
o \o
121
r=6
10 \g . - The comparison of finite~time interaction V(r,t),
o l r given by the analytical expression (9), with lattice
08k IR data from Ref. [4]. Solid lines represent analytical
’ : } r=2 calculations for different fixed r (e=0.302; oa?=
—o—s *— + 0.0589; aVp=0.70; 5 = 0.25); lattice data are shown
06 i l by circles for » =2, diamonds for r =4 and squares
1 i for r =6
g § 10 t+1

From formulas (15),(16) asymptotically one has
V(r,t)—-—v—g+(¢m2)r+Vo t>r> 1) (17)

As follows from our calculations this behaviour is achieved already at ¢t 2 r»+4.
Here we would like to stress several points:

1) For rather large r, e.g. r=0 and r =8, the perturbative term is much
smaller than NP one, so we cannot feel the essential difference between V...
(exact) and (—e/r) in the total interaction, V, even for small times (t <r) when
they have the opposite sign.

Hence to study pure perturbative effects at finite 7' on the lattice and, in
particular, the problem of freezing of a,(R) at large distances (2, 9], it is necessary
to separate perturbative an NP terms with good accuracy.

2) For large r (r =06 or 8) the perturbative asymptotics is achieved only for
the values of ¢ 2 r + 4(t 2 10) meanwhile on the lattice [4] the fit of parameters
(Vo,€) is usually done for smaller times t=4 or § (where the use of asymptotical
interaction is not valid).

3) In (17) our constant term Vp is universal for any large t and r (Vo =0.70).
So for large r (r fixed) when Coulomb term in (17) can be neglected, V(r,t)
is approaching the plateau value: V(r fixed, any t) = [(0a®)r + Vo]. This simple
asymptotics agrees well with the plateau values in lattice calculations [4] both for
smeared and nonsmeared Wilson loops.

4) Our conclusions about the complex structure of perturbative interaction at
finite T is in agreement with results of recent analysis in [I0] where Ilattice
Coulomb contributions V,(R,T) and V;(R,T) (analougs to formulas (12) and (13))
have been measured and the important role of “unphysical” term V,(r,t) was
stressed. Besides this term there is another ”unphysical” term V., (11), absent
in [10), which is extremely important in achieving the asymptotic regime (15).
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