Pis'ma v ZhETF, vol.61, iss.6, pp.434 - 438 © 1995 March 25

SOLUTION OF SELF-DUALITY EQUATION IN
QUANTUM-GROUP GAUGE THEORY

B.M. Zupnik!)
Bogoliubov Laboratory of Theoretical Physics , JINR
141980 Dubna, Moscow Region, Russia

Submitted 6 February, 1995

We discuss a gauge theory for the quantum group SU4(2) x U(1) on the
quantum Euclidean space. This theory contains three physical gauge fields and
one U(1)-gauge field with a zero field strength. We construct the quantum-group
self-duality equation (QGSDE) in terms of differential forms and with the help of the
field-strength decomposition. A deformed analogue of the BPST-instanton solution
is obtained. We consider the possibility of a harmonic (twistor) interpretation of
QGSDE in terms of quantum harmonics.

An attractive idea of quantum deformations for the gauge theories has been
considered in the framework of different approaches [1-3]. Formally one can
discuss independent deformations of basic spaces and gauge groups and possible
correlations between these deformations. We shall here consider a gauge theory
with identical one-parameter deformations of the 4-dimensional Euclidean space
and the gauge group SU(2). A consistent formulation of the gauge theory for the
semisimple quantum group SU,(N) is unknown to us, so we shall deal with the
quantum group Ug(2) =SUy(2) x U(1). It will be shown that the U(l)-gauge field
can be treated as a field with a zero field strength.

Consider the standard relations between elements T} of the quantum U, (2)-
matrix [4]

RTT' =TT R & RyTTT=TTERT, (1)

where I is a unity matrix , R is the constant symmetric matrix with components
Rk (g) (4,kl,m=1,2) and ¢ is a real deformation parameter. We use the
R-matrix method in the condensed notations of ref. [3] (see also [4,5]). A
translation of matrix formulae to the usual index notation can be fulfilled with
the help of the following substitution:

R= Rk, T= (TN} =Tl T =(IQT)=45T. (2)

The parameters q(ik) (q(12) = ¢, ¢(21) = ¢7!, g(11) = ¢(22) = 1) define a
g-deformation of the e-symbol ex(g) = \/q(ik)eir where £; is the ordinary anti-
symmetric symbol.

The R-matrix can be written in terms of projection operators P(#): R =
gP() _g=1p(=) p(+) 4 P(-) = ]. The operator P(~) for Uy(2) is proportional to
the product of two £{g)-symbols:

[PONE =— F(@emi(a), e (@)eale) =8 3)

1-1-2

Here the basic identity for £(g)-symbols with upper indices is written also.
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We shall use the covariant relation for the quantum determinant D(T) of the
Uq(2)-matrix
emi(9)T} TP = exi(g) D(T). (4)

1 can be obtained

A covariant expression for the inverse quantum matrix S(T) =T~
from this equation.
The SUy(2)-metric D(g) determines the matrix product of transposed g¢-
matrices[4]
T; D7 (9)S(T)m = Di(q) = —€mi(2)e™ (q) - (%)

The unitarity condition for the matrix T can be formulated with the help of

involution [4] T} = Sk.
Let us consider the bicovariant differential calculus on the U, (2) group {5-7]

TdT'=RdT T’ R, (6)
D(T) dT = ¢*dT D(T).

Note that the condition D(T) =1 is inconsistent in the framework of this calculus.
Consider the relations for the right-invariant differential forms w =dT S [3]

wRw + RuRwR=0, Tw' =RwRT. 7

The quantum trace ¢ of the form w plays an important role in this calculus

{(T) =Df(q)wi(T) 70, €=0, de=0. (8)
dT =wT =(¢° - q)~YT\¢], ¢dD(T)=¢(D(T),
dw=w? = (g - ¢°)"* {¢,w}. (9)

Note that the basic relations of the bicovariant calculus on GL.(2) and Ug(2)
have been analysed in details [5-7]. We shall call this calculus as BC-calculus.

The BC-calculus makes the basis for consistent formulation of quantum-group
gauge theory in the framework of moncommutative algebra of differential complexes
[2-3]. Consider formally the quantum group gauge matrix 72(z) defined on some
basic space. Suppose that eqs. (4)-(6) satisfy locally for each ”point” z. Then
one can try to comstruct the U,(2)-comnection I-form Ag(z) which obeys the
simplest commutation relation

(ARA+RARAR)YG=AR:AI + RS ASRY AL R = 0. (10)

These relations generalize the anticommutativity conditions for components of the
classical connection form. Note that the general relation for A contains a nontrivial
right-hand side [3].

Coaction of the gauge quantum group U,(2) has the following standard form:

A—T(z) AS(T) + dT(z) S(T)=T A S + w(T), (11)
a=Tr A — a+&(T).

The restriction a =0 is inconsistent with (10), but we can use the gauge-covariant
relations a?=0 and Tr,4% =0.
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It should be stressed that we can choose the zero field-strength condition da =0
for the U(1)-gauge field 2). This constraint is gauge invariant and consistent with
(10). The deformed pure gauge field a can be decoupled from the set of physical
fields in the limit ¢ = 1. We shall consider further the U,(2)-gauge theory with
three "physical” gauge fields and one ”zero-mode” U(1) field. The curvature 2-form
F=dA — A? is g-traceless for this model.

Quantum deformations of Minkowski and Euclidean 4-dimensional spaces have
been considered in refs. [8,9]. We shall treat the coordinates zi, of g-deformed
Euclidean space E4(4) as generators of a noncommutative algebra (Rz z’' =z z'R)
covariant under the coaction of the quantum group G.(4) = SUE(2) x SUR(2) .
The g-deformed central Euclidean interval r can be constructed by analogy with
the quantum determinant

T=z}z - qzizl= ~1 _z o sp"(q)ek.-(q):c‘;,z:f,. (12)

We do not consider the quantum group structure on E,(4). It is convenient to
use the following E,(4) involution

zh = ein(g)afe?™(g) = 75¢ (=), (13)

T=r, z=2i, (14)

where S(z) is an inverse matrix for the matrix z.

We shall use an analogue of the bicovariant U,(2)-calculus for studying differ-
ential complexes on E.(4). The commutation relations between matrices z and dz
can be obtained from egs. (6 - 9) by formal substitution T'— z. One can obtain
, for example

hdzp = Ri¥ dzl = R15, (15)
P dzde’ PH) =0 = p(~)dzdz' P(-).

The basic decomposition of 2-forms on F,(4) has the following form

dzf,d:cf, =[P )dzde' + dzdx'P(')]f,",, =¥ (q)d%zap + €palg)d?z*F, (16)

where eq. (3) for P(-) is used. By analogy with the classical case we can treat
two terms of this decomposition as self-dual and anti-self-dual 2-forms under the
action of a duality operator * .

Consider the right-invariant 1-forms on E,(4)

wi(z) = [dzS(z)]i = dzi 5P, dzr=uwz (17)

where S(z) is the inverse matrix for z defined by eq. (13). It is convenient to
. rewrite the decomposition of 2-forms in terms of the right-invariant self-dual and
anti-self-dual forms ‘

dzde’ = waw's’ = w Rw Raz!, (18)

2)This condition is consistent also for the case of GL4(N) group.
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Pz d' = ¢ P(-)wRwza! PO = P(O)Qg Py’ (19)
dz dz'P(-) =, PGz, (20)

Qs = +0s = ¢*w? + qu¢, (21
Qq=—(¥Q4) = ¢ lw¢ — w2 (22)

Here the comutation relations of BC-calculus on E,(4) and properties of the P*-

operators were used. It should be stressed that the condensed notations simplify
significantly these calculations.

Let us introduce the simple ansatz for quantum U,(2) anti-self-dual gauge fields

= dz! A%3%(z) = wi(z) f(7), (23)

a“‘tid

A% (z) =82Sy (z) f(7),

where f(r) is a function of g-interval (12). Note that this ansatz is a partial case
of more general construction of the differential complex on GL,(2) [2,3]. Addition
of the term £(z)g(7) results in a relation for the connection A more complicated
than (10) .

Consider the g-traceless curvature form for the connection (23) which can be
calculated in the framework of the BC-calculus on E,(4)

F=w?f(r)[1 - f(g*7)] + (¢® — ) 'wé[f(7) — f(¢*T)]. (24)

An appearance of the finite translation f(g’7) is a general feature of the calculus
on the quantum space.

The anti-self-duality equation for our ansatz is equivalent to the nonlinear
finite-difference equation

xF=—F = F ~Quf(r)[l - f(¢*7)), (25)
f(r) = f(@®r) = (1 - ) f(7)[1 = f(g*7)], (26)
where 14 is the anti-self-dual 2-form (22).

This equation has a simple solution analogous to the classical BPST-solution

firy=——, (27)

where a is an arbitrary ”constant” that can be treated as a central periodical
function: a(7) = a(¢®r). Note that our solution for the connection A contains the
parameter g only through definitions of w(z) and 7, however, the corresponding
curvature has more explicit g-dependence (24).

It is easy to obtain the 5-parameter solution via substitution 3) z{ — &% =
zi, + ¢ in eqs. (23), (27). Stress that our anti-self-dual solution is a function on
the braided algebra with the noncommuting generators z, dz, a and c.

R:&'=%% R, Rcc=cdR, cz'=Rzc R, (28)
‘cdz'=Rdzc R, [%,7(£)]=0, ‘ 29)

di = dz, dc=0,

7(2)dz = ¢*dz7(%).

3)The addition of g-matrices was considered early by V.Jain, 0.Ogievetsky and S.Majid.
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The QGSD-equation can be written in terms of the field strength
F=dzldef Fi*(z), FEP =eniq)FP. (30)

Introduce the additional noncommutative harmonic (twistor) variables u’ sat-
isfying the relations ekg(q)uf*_u'j_ ={0. One can obtain the integrability condition
multiplying the QGSD-equation by the product u"+u'fl,. The analogous integrabil-
ity conditions are the basis of the harmonic (twistor) approach to the classical
self-duality equation [10,11]. We considered the deformed harmonic formalism of
QGSDE in ref. [12].

It seems very interesting to study reductions of QGSDE to lower dimensions
and to search a more general deformation scheme for the self-duality equation.
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