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It is demonstrated that solitons existing due to mutual trapping of the
fundamental and second-harmonic waves in a dispersive media with cascaded second-
order nonlinearity are stable. It is proved that solitons realize the minimum of the
Hamiltonian for the fixed Manly -Row integral.

Recent progress in studying materials with high second-order nonlinearities (see,
e.g., [1] and references therein) stimulates interest to the problem of nonlinear waves
propagation in such media. Dielectric materials with quadratic nonlinearity (the
so-called x? materials) provide one of the fastest electronic nonlinearities available
to date. A possibility to generate in such materials a large intensity-dependent
phase shift is of interest for future all-optical devices [2]. Experimental observation
of the cascading process has been reported recently in [3]. In fact, the existence
of solitons due to mutual trapping of the fundamental and second-harminic waves
in the media with quadratic nonlinearities has been predicted in [4]. Structure
and dynamics of temporal and spatial solitons in the x? materials have been
investigated in [4-8]. These studies have revealed the existence of various types
of bright and dark solitons [6—8]. The central question for the physical relevance
of these solitons is their stability.

In this Letter we study stability of multidimensional solitons that exist due to
parametric interactions between the fundamental and second harmonics in quadratic
nonlinear media. We demonstrate that solitons are stable because they realize a
minimum of the Hamiltonian for fixed Manly-Row integral for any dimension of
the problem.

Spatiotemporal evolution of the dimensionless slowly varying envelopes of the
fundamental U and second harmonic V waves is governed by the following basic
system written in the Hamiltonian form

.U v, 6H
t—a—g AU -U"V 3—1,]—;,

V1 1, 6H
1—36 ——iAV— -2—U _—6V*, (1)

here we use notation of Ref. [6], £ is the normalized propagation distance, A is
Laplasian. The Hamiltonian reads H =1I; — I, where

» , 1
n= [190P+ 519V Pldr, 1= [0V + Vo
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Besides the Hamiltonian, the Manly-Row integral P = [[|U[* + 2|V|*|dr is a con-
sreved quantity.
We study stability of the two- and three-dimensional localized symmetrical
stationary solutions of Eqs. (1) of the form U =exp(iA{)f(r), V =exp(iAf)g(r).
The profile of solitons is given by the nonlinear eigenvalues problem for ), f
and g.

—Af+Af+ fg=0,
—4Xg+ Ag+ f2=0. (2)

This system of equations can be rewritten in a variational form
§(H+AP)=0. (3)

This means that solitons realize extremum of the Hamiltonian for the fixed P. We
will show that a ground symmetrical solutions realize a minimum of the H. From
Eq. (3) we can directly express the Hamiltonian in terms of P and ) on the
soliton solution. Indeed, comsider trial functions for the variational problem (3) in
the form fi =af,o and g1 = ag,o, where f,,1, g, stand for ground solutions of
Eq. (2). Varying « near 1 we find that

a
%‘a:l(H + AP) =201 — 312401 + 22 P, = 0. (4)

The similar procedure with trial functions of the form f; = f,.i(8r), 92 = g;a1(Br)
give the realation

3
Eﬁlpﬂ(ﬂ + AP)=(d = 21,0 —dI3,01 + dAP,s; =0, (5)

where d is a dimension of the problem. Straightforward algebraic manipulations
yield

4-d
H-ox=—g-_—a)\P.o!- (6)

Using simple scaling we can present ground solutions in the form f,u{r,}) =
Mo(VAr), gso(r, A) = Ago(v/Ar). Here we introduce f, and go as a ground solution
of Eq. (2) with A=1. Now P,y can be expressed in terms of P, = P,u|fo,go) :

P =)D, (7)

The Hamiltonian on the ground solution can be written in the following form

4—d (Pu\™?
H:ol -m ( PO ) Psol- (8)

To demonstrate that the ground soliton solution realizes minimum of the
Hamiltonian for the fixed P, we need to prove some interpolation estimate
for I, through I; and P. Consider minimization problem for the functional
Jf. 9] = P(G"’)/'*If/‘/b. It can be shown that a minimum is attained on the
ground symmetrical soliton solution of the Eq. (2). In the proof we follow
the procedure used in [9] (see for details [10]). Functional J is invariant under
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transformation f = vf(ur),§ = yg(pr). Thus, by scaling we can take I, = ﬁ,\P
and Iz = géiz\P. Computing the Euler-Lagrange equation for J leads to the Eq.
(2). Indeed,

6-dl _ dl

SR GpAf - =0 )
and 6-dl dl

6-d1, __z_

- G- -0 (10)

Using simple scaling transformation it is easy to obtain Eq. (2) from these
equations. Minimum is attained at a functions f and ¢ which are positive and
functions of r alone. The compactness lemma providing that such a solution exists
has been proved in [9].

Thus, we find that the minimum of J is attained at the ground soliton solution
and can be calculated as

min(J) = Co = (¢— )"*( -y (11)

From this one can obtain an mtetpolatlon estimate with the ”"best constant” Cp:
I3 < CoP(G‘d)/‘If/ *. Substituting this estimate into the Hamiltonian, we come to
the estimate of the H from below for the fixed P

H=L~I,> I, - CGGPS*If > PEiC, "-"‘[(d/4)*/(4-¢> — (d/4)H =D =

4-d
6—d

Thus, the ground symmetrical soliton solution of Eq. (2) realizes minimum of
the Hamiltonian. Now it is easy to see that a functional L = H — H,, satisfies
all requirements to the Lyapunov function and the solitons are stable due to
Lyapunov’s theorem.

In conclusion, we have shown that solitons due to mutual trapping of the
fundamental and second-harminic waves propagating in a medium with quadratic
nonlinearities are stable. The approach and results obtained can be easily applied
to other models of different physical context where parametric wave interactions
are generated by quadratic nonlinearities.
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