Pis’ma v ZhETF, vol.71, iss.10, pp.600 - 605 © 2000 May 25

CRITICAL EXPONENTS FOR THREE-DIMENSIONAL IMPURE
ISING MODEL IN THE FIVE-LOOP APPROXIMATION

D.V.Pakhnin, A.I.Sokolov®

Saint-Petersburg Electrotechnical University
197376 Saint Petersburg, Russia

Submitted 4 April 2000

The renormalization-group functions governing the critical behavior of the three-di-
mensional weakly-disordered Ising model are calculated in the five-loop approximation.
The random fixed point location and critical exponents for impure Ising systems are
estimated by means of the Padé-Borel-Leroy resummation of the renormalization-group
expansions derived. The asymptotic critical exponents are found to be: ¥ = 1.325+0.003,
n = 0.025 4 0.01, v = 0.671 £ 0.005, a = —0.0125 £ 0.008, § = 0.344 + 0.006, while for
the correction-to-scaling exponent less accurate estimate w = 0.32 + 0.06 is obtained.

PACS: 05.50.+q, 05.70.Jk, 75.10.Hk, 75.40.Cx

Today, two regular field-theoretical methods exist to evaluate the universal critical
quantities of uniaxial impure magnets described by the three-dimensional (3D) random
Ising model: the /e-expansion invented by Harris and Lubensky {1, 2] and Khmelnit-
skii [3] and the renormalization-group (RG) approach in three dimensions. The former
technique, being well developed [4, 5], was recently shown to have limited numerical power
since {/e-expansions for critical exponents, calculated starting from the five-loop series [6]
up to the /¢* and Ve terms [7], exhibit irregular structure making them unsuitable for
subsequent resummation and extracting numerical estimates [8].

On the contrary, the field-theoretical RG approach in three dimensions proved to be
very effective when used to estimate the critical exponents and other universal charac-
teristics of the O(n)-symmetric systems [9-19]. The weakly-disordered Ising model
at criticality is known to be described by the n-vector ¢* field theory with the quartic
self-interaction having a hypercubic symmetry, provided n — 0 (the replica limit) and
the coupling constants have proper signs. In eighties, the RG expansions for 3D cubic
and impure Ising models have been calculated in the two-loop [20], three-loop [21, 22]
and four-loop [23, 24] approximations paving the way for estimating the universal critical
quantities {20 -33]. The four-loop 3D RG expansions, however, resummed by the gen-
eralized Padé-Borel-Leroy method do not allow to optimize the resummation procedure
since there is the only approximant ([3/1]) that does not suffer from positive axis poles.
Moreover, an account for the four-loop terms in the 3D RG series shifts the random fixed
point coordinates and the correction-to-scaling exponent w appreciably with respect to
the three-loop estimates, indicating that at this step the RG based iterations do not still
achieve their asymptote.

In such a situation a calculation of the higher-order contributions to the RG functions
looks very desirable. In this Letter, the five-loop RG expansions for the 3D impure Ising
model are obtained and the numerical estimates for the critical exponents are found.
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We start from the Landau — Wilson —Hamiltonian of the 3D n-vector cubic model:
1 U, v
H= E/dsz[m&pi +(Vea)? + I—%sp?,sp?, + %p;‘. : (1)

where ¢ is an n-component real order parameter, m2 being the reduced deviation from
the mean-field transition temperature. In the replica limit, this Hamiltonian describes
the impure Ising model provided u, < 0 and v, > 0. :

The RG functions for the Hamiltonian (1) are found within a massive theory. To
extend known four-loop RG series [23, 24] to the five-loop order, we calculate the tensor
(field) factors generated by the cubic interaction. Taking then the values of 3D integrals
from Ref.[34], we arrive, under n = 0, to the following expansions:

B 4(190%2 + 300uv + 69v?%)

¢ =1-8u—6v+ 57 — 199.64042u° — 493.84155uv —
u

—302.86779uv? — 65.937285v° + 1832.2067u? + 6192.5121u3v + 6331.2264uv? +
+2777.3942uv® + 495.00575v* — 20770.177u® — 89807.670u’y —
—130340.91u3v? — 90437.636uv® — 33088.223uv? — 5166.3920v°, (2)

2 2
%— -1 12u— gy + 270+ 6;‘;’“’ +23107) _ 469.333970° — 1228.6059u%

—957.78166uv? — 255.92974v% + 5032.6923u* + 17967.851uv + 21964.394u%v? +
+11856.95Tuv® + 2470.3925v* — 64749.282u5 — 294450.70u‘y —
~493917.04u3v? — 407119.31u%v® — 170403.12uv* — 29261.585¢°. (3)

yl=1-u-— %2+2u2 +6uv+3v2 —9.4527182u2 — 42.537232u’v — 49.298206uv? —

—16.817754v° + 70.794806u* + 424.76884u3v + 752.04939u%v? + 516.26675uv® +
+130.47743v* — 675.69961u® — 5067.7471u'y — 12193.045u312 —
—12966.212u%v® — 6587.8339uv® — 1326.21230%.  (4)

8(2u? + 6 2 ’
n= (2u” + 21;11 +3v7) + 0.39494402u® + 1.7772481u%v + 1.9994041uv? +

+0.66646804v° + 6.5121099u* + 39.072660u’v + 68.665263uv? + 47.140073uv® +
+11.785018v* — 21.647206u> — 162.35405u*y — 382.02381u3v? —
—389.99671uv® — 193.00269uv?® — 38.600539v°. (5)

The five-loop RG series for generic n are presented in Ref.[35].

Numerical values of critical exponents are determined by the coordinates of the random
fixed point. To find its location the Padé-Borel-Leroy resummation technique is applied
which demonstrated high effectiveness both for O(n)-symmetric models [9, 11, 15} and
for anisotropic systems preserving their internal symmetries (see, e. g. Ref.[36]). Since
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the RG functions depend on two variables, the Borel-Leroy transformation is taken in a
generalized form: ‘

o
flu,v) = Zci,-u"vj = /e"‘tbF(ut, vt)dt,
ij

0

a: y) Z (' j’j]z-f]b (6)

To perform an analytical continuation, the resolvent series

Fapn) = 3oy e GntTy” (7)

n=0 =0

is constructed with coefficients being uniform polynomials in «, v and then Padé approx-
imants [L/M] in A at A = 1 are used.

For the resummation of the five-loop RG expansions we employ three different Padé
approximants: {4/1}, [3/2], and [2/3]. The first of them, being pole free, is known to
give good numerical results for basic 3D models of phase transitions, while the others
are near-diagonal and should reveal, in general, the best approximating properties. The
coordinates of the random fixed point resulting from the series (2, 3) under b = 0 and
b = 1 are presented in Table 1, where superscript "p” stands to mark that the Padé
approximant has a "non-dangerous” positive axis pole.

Table 1
b (4/1] (3/2] {2/3] [3/1]
U, 0 —0.7200 —0.7148 —0.6871 —0.6991
1 —0.7445 —0.73857 —0.6839
Ve 0 2.0182 2.0125 2.0571 1.9922
1 2.0296 2.0236° 1.9877
w 0 0.266 0.303 0.462° 0.376
1 0.263 0.325° 0.361

This Table, where widely accepted variables U = 8u and V = 8v are used instead of u
and v, contains also the four-loop estimates. The four-loop series were processed on the
base of the Padé approximant [3/1], since use of the diagonal approximant [2/2] leads to
the integrand in (6) that has a dangerous pole near the random fixed point both for 3,
and ? 3,. The fixed point location given by the approximant [2/3] is presented for b = 0
only, because for b = 1 this approximation predicts no random fixed point.

As is seen from Table 1, Padé approximants [4/1] and [3/2] yield numerical values
of U, and V. which are very close to each other. Moreover, for b = 0 they are also
close to those given by the approximant [3/1]: the largest difference between the five-loop
and four-loop estimates does not exceed 0.03. With increasing b corresponding numbers
diverge indicating that b = 0 is an optimal value of the shift parameter. On the contrary,
Padé approximant [2/3] gives the random fixed point location which deviates appreciably
from those predicted by approximants [4/1], [3/2], and [3/1]. This approximant, however,
leads to poor numerical results even for simpler systems. Indeed, when used to evaluate
the coordinate of the Ising fixed point it results in V. = 1.475 (under b = 0) while the

3 In fact, under b = 1 the approximant [3/2] generates the expression for 8, that is also spoilt by
a positive axis pole at the random fixed point. This pole, however, being well remoted from the origin
(t = 40.12), turns out to be not dangerous, i. e. does not influence, in practice, upon the evaluation of
the Borel integral.
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best today estimate is V, = 1.411 [14]. This forces us to reject the data given by the
approximant [2/3].

To finally determine the coordinates U, and V., we average the numerical data given
by three working Padé approximants at b = 0. This procedure yields the values

Ue=-071, V=20, (8)

which are claimed to be the results of our search of the random fixed point location. To
estimate their apparent accuracy we accept that deviations of these numbers from the
exact ones would not exceed the differences between them and the four-loop results since,
among all proper estimates, the four-loop ones most strongly differ from the averaged
values. Hence, the error bounds for U, and V. are believed to be not greater than +0.02.
Another way to estimate an apparent accuracy is to trace how the averaged values of the
random fixed point coordinates vary with the variation of b. We calculate U, and V, using
the pole-free approximants [4/1] and [3/1] for b lying between 0 and 15. Running through
this interval the averaged coordinates change their values by about 0.02 indicating that
an accuracy of the estimates found is of order of few per cents.

Let us evaluate further the critical exponents. The exponent « is estimated by the
Padé-Borel-Leroy summation of the series (4) for ¥~! and of the analogous RG expan-
sion for vy, with approximants [4/1) and [3/2] being employed. The numerical value of the
Fisher exponent is also found in two different ways: via the estimation of the critical ex-
ponent 12 = (2—n)(y~! —1) having the RG expansion which exhibits a good summability
and by direct substitution of the fixed point coordinates into the series (5) with rapidly
diminishing coefficients. Direct summation of the RG expansion for n gives n = 0.027,
numerical results obtained by making use of the resummation procedures just described
are collected in Table 2.

Table 2

b 0 1 2 3 5 10 15
(v0)~T [ [4/1] | 1.3236 | 1.3244 | 1.3250 | 1.3254 | 1.3260 | 1.3268 | 1.3272
3/2 - - - 1.3253? 1.3260 1.3265 1.3267
v 4/1 1.3245 1.3248 1.3250 1.3252 1.3254 1.3257 1.3259
3/2 1.32467 1.32517 | 1.32547 { 1.32577 | 1.32617 | 1.3267P | 1.3270P
n 4/1 0.0312 0.0276 0.0251 0.0231 0.0204 0.0166 0.0148
(via 72) | [3/2] - - - 0.02877 | 0.02177 | 0.01677 | 0.0149

In this Table, symbol (y~*)~! means that the RG series for y~! was resummed. The
empty cells are due to the dangerous poles spoiling corresponding approximations. The
estimates for 7 standing in the 5-th and 6-th lines were obtained under y = 1.325 by the
resummation of the RG series for 7,.

As is seen, two methods of evaluating « lead to remarkably close numerical results
which very weakly depend on the tune parameter. Indeed, with increasing b from 0 to
15 the estimates for -y obtained by the resummation of the RG series for v and v~! on
the base of the pole-free approximant [4/1] vary by less than 0.0036 while the difference
between them never exceeds 0.0013. Under the same variation of b, the value of y averaged
over these two most reliable approximations remains within the segment [1.3240, 1.3266).
On the other hand, the accuracy of determination of the critical exponents depends not
only on a quality of the resummation procedure but also on the accuracy achieved in the
course of locating of the random fixed point. That is why we investigated to what extent
the estimates for v vary when coordinates of the random fixed point run through their
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error bars. It was found that v calculated at the optimal value of tune parameter b = 2
(see Table 2) does not leave the segment [1.3228, 1.3263]. Hence, the error bounds for
the value of 4 are believed to be about +0.003.

Less stable numerical results are found for the Fisher exponent 5. As is seen from
Table 2, the values of ) given by the RG series for 72 and the pole-free Padé approximant
[4/1] spread from 0.0148 to 0.0312. The average over this interval is equal to 0.023, while
the direct summation of the series (5) gives 0.027. Hence, 0.025 should play a role of the
most likely value of exponent 7. Since the estimates for 7 found via the evaluation of 7
are sensitive to the accepted value of 7y the apparent accuracy achieved in this case is not
believed to be better than +0.01.

Having estimated v and 7, we evaluate other critical exponents using well-known
scaling relations. The final results of our five-loop RG analysis are as follows:

v = 1.325 + 0.003, n = 0.025 £ 0.01, v = 0.671 £ 0.005,
a = —0.0125 £ 0.008, 3 = 0.344 + 0.006. (9)

It is interesting to compare these numbers with those obtained earlier within the lower-or-
der RG approximations. For the exponent v previous 3D RG calculations gave the values
1.337 [20, 25] (two-loop), 1.328 [22] (three-loop), 1.326 {23] (four-loop), and 1.321 [24]
(four-loop). Being found by means of the different resummation procedures, they are,
nevertheless, centered around our estimate which is thus argued to be close to the exact
value of v or, more precisely, to the true asymptote of the RG iterations.

In conclusion, we evaluate the correction-to-scaling exponent w. This exponent is
known to be equal to the eigenvalue of the stability matrix

9By 9Bu
Ou v
(10)
08, 08By
éu ov

that has a minimal modulus. The derivatives entering this matrix are evaluated numeri-
cally at the random fixed point on the base of the resummed RG expansions for 8, and
By and then the matrix eigenvalues are found. Such a procedure leads to the estimates
for w presented in Table 1 (lower lines); the superscript ”c” denotes that w is complex
within corresponding approximation and its real part is presented. The numerical values
obtained are seen to be considerably scattered and sensitive to the tune parameter. The
average over three working Padé approximants, however, being equal to 0.315 at b = 0
and to 0.316 at b = 1 turns out to be stable under the variation of b unless b becomes
large. It is natural therefore to accept that

w = 0.32 = 0.06. (11)

This number is smaller by 0.05 — 0.07 than its counterparts given by recent Monte-Carlo
simulations [37] and the alternative RG analysis [32], but their central values lie within
the declared error bounds (11). Hence, an agreement between the results discussed exists.
On the other hand, the estimate just found needs to be refined, along with the estimates
for n and a also exhibiting appreciable uncertainties. Hopefully, a proper processing of
the six-loop expansions obtained very recently [38] would enable one to improve further
the accuracy of the predictions given by the field-theoretical RG approach.
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