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We discuss the friction experienced by the body rotating in superfluid liquid at T = 0.
The effect is analogous to the amplification of electromagnetic radiation and sponta-
neous emission by the body or black hole rotating in quantum vacuum, first discussed by
Zeldovich and Starobinsky. The friction is caused by the interaction of the part of the
liquid, which is rigidly connected with the rotating body and thus represents the comov-
ing detector, with the "Minkowski” superfluid vacuum outside the body. The emission
process is the quantum tunneling of quasiparticles from the detector to the ergoregion,
where the energy of quasiparticles is negative in the rotating frame. This quantum ro-
tational friction caused by the emission of quasiparticles is estimated for phonons and
rotons in superfluid *He and for Bogoliubov fermions in superfluid 3He.

PACS: 04.70.-s, 42.50.-p, 67.40.-w, 67.57.Fg

Introduction. The body moving in the vacuum with linear acceleration a is believed
to radiate the thermal spectrum with the Unruh temperature Ty = Fa/2re [1]. The
comoving observer sees the vacuum as a thermal bath with T' = Ty, so that the matter
of the body gets heated to Ty (see references in {2]). Linear motion at constant proper
acceleration (hyperbolic motion) leads to velocity arbitrarily close to the speed of light.
On the other hand uniform circular motion features constant centripetal acceleration
while being free of-the above mentioned pathology (see the latest references in [3-5)).
The latter motion is stationary in the rotating frame, which is thus a convenient frame
for study of the radiation and thermalization effects for uniformly rotating body.

Zel’dovich [6] was the first who predicted that the rotating body (say, dielectric cylin-
der) amplifies those electromagnetic modes which satisfy the condition

w-LR<0. (1)
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Here w is the frequency of the mode, L is its azimuthal quantum number, and Q is the
angular velocity of the rotating cylinder. This amplification of the incoming radiation
is referred to as superradiance [7]. The other aspect of this phenomenon is that due
to quantum effects, the cylinder rotating in quantum vacuum spontaneously emits the
electromagnetic modes satisfying Eq.(1) [6]." The same occurs for any rotating body,
including the rotating black hole [8], if the above condition is satisfied.

Distinct from the linearly accelerated body, the radiation by a rotating body does
not look thermal. Also, the rotating observer does not see the Minkowski vacuum as a
thermal bath. This means that the matter of the body, though excited by interaction
with the quantum fluctuations of the Minkowski vacuum, does not necessarily acquire an
intrinsic temperature depending only on the angular velocity of rotation. Moreover the
vacuum of the rotating frame is not well defined becduse of the ergoregion, which exists
at the distance r, = ¢/ from the axis of rotation.

The problems related to the response of the quantum system in its ground state to
rotation [3], such as radiation by the object rotating in vacuum [6,9, 8, 7] and the vacuum
instability caused by the existense of ergoregion [10), etc., can be simulated in superfluids,
where the superfluid ground state plays the part of the quantum vacuum. We discuss the
quantum friction due to spontaneous emission of phonons and rotons in superfluid ‘He
and Bogoliubov fermions in superfluid *He.

Rotating frame. Let us consider a cylinder of radius R rotating with angular velocity
2 in the (infinite) superfluid liquid. In bosonic superfluids the quasiparticles are phonons
and rotons; in fermi superfluids these are the Bogoliubov fermions. The phonons are
"relativistic” quasiparticles: Their energy spectrum is E(p) = ¢cp + p - v,, where cis a
speed of sound and v, is the superfluid velocity, the velocity of the superfluid vacuum;
and this phonon dispersion is represented by the Lorentzian metric (the so-called acoustic
metric [11,12]):

9pupy =0, g0 =-1, g% =0l g*=c2%* —pivk (2)

When the body rotates, the energy of quasiparticles is not well determined in the
laboratory frame due to the time dependence of the potential, caused by the rotation of
the body. But it is determined in the rotating frame, where the potential is stationary.
Hence it is simpler to work in the rotating frame. If the body is rotating surrounded by
the stationary superfluid, i.e. v, = 0 in the laboratory frame, then in the rotating frame
~one has v, = —§ x r. Substituting this v, in Eq.(2) we get the interval ds? = Guvdztdz,
which determines the propagation of phonons in the rotating frame:

ds? = —(2 — Q%r?)dt? - 2Qr%dgdt + dz® + r2dg® + dr? . 3)

The azimuthal motion of the quasiparticles in the rotating frame can be quantized in terms
of the angular momentum L, while the radial motion can be treated in the quasiclassical
approximation. Then the energy spectrum of the phonons in the rotating frame is

E=q/f—j+p§+p§—QL. (4)

Ergoregion in superfluids. The radius r. = ¢/, where goo = 0, marks the position
of the ergoplane. In the ergoregion, i.e. at r > . = ¢/Q, the energy of quasiparticle in
Eq.(4) can become negative for any rotation velocity and 2L > 0. We assume that the
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angular velocity of rotation § is small enough, so that the linear velocity on the surface
of the cylinder QR is less than vy = ¢ (the Landau velocity for nucleation of phonons).
Thus phonons cannot be nucleated at the surface of cylinder. However in the ergoplane
the velocity v, = Qr in the rotating frame reaches c, so that quasiparticle can be created
in the ergoregion r > 7.

The process of creation is, however, determined by the dynamics, i.e. by the interaction
with the rotating body; there is no radiation in the absence of the body. If QR < vy =¢
one has r, > R, i.e. the ergoregion is situated far from the cylinder; thus the interaction
of the phonons state in the ergoregion with the rotating body is small. This results in a
small emission rate and thus in a small value of quantum friction, as will be discussed
below.

Let us now consider other excitations: rotons and Bogoliubov fermions. Their spectra
in the rotating frame are

E(p)=A+(p—2_7ff)j—ﬂL, (5)
E(p) = /A% + v(p - po)? — QL . (6)

Here py marks the roton minimum in superfluid *He and the Fermi momentum in Fermi
liquid, while A is either a roton gap or the gap in superfiuid 3He-B. The Landau critical
velocity for the emission of these quasiparticles is v, = min(E(p)/p) ~ A/po. In *He the
Landau velocity for emission of rotons is smaller than that for the emission of phonons,
vy, = c. That is why the ergoplane for rotons, r. = vr/Q, is closer to the cylinder.
However, for the rotating body the emission of the rotons is exponentially suppressed
due to the big value of the allowed angular momentum for emitted rotons: the Zel’dovich
condition Eq.(1) for roton spectrum is satified only for L > A/Q > 1 (see Fig.b).

Rotating detector. Let us consider the system, which is rigidly connected to the
rotating body and thus comprises the comoving detector. In superfluids the simplest
model for such a detector consists of the layer near the surface of the cylinder, where the
superfluid velocity follows the rotation of cylinder, i.e. v, = 2 xr in the laboratory frame
" and thus v, = 0 in the rotating frame. This means that, as distinct from the superfluid
outside the cylinder, in such a layer the quasiparticle spectrum has no —QL shift of the
energy levels.

Since in the detector matter, i.e. in the surface layer, the vorticity in the laboratory
frame is nonzero, V x v, = 2§ # 0, this layer either contains vortices or is represented by
the normal (nonsuperfluid) liquid, which is rigidly rotating with the body. Actually the
whole rotating cylinder can be represented by the rotating normal liquid. The equilibrium
state of the rotating normal liquid, viewed in the rotating frame, is the same as the
equilibrium stationary normal liquid, viewed in the laboratory frame.

The rotating cylinder can also be represented by the cluster of the quantized vortices.
The average superfluid velocity within the cluster is < v, >= 0 in the rotating frame.
Thus within the cluster the superfluid is in the ground state in the rotating frame, while
outside the cluster the superfluid is in the ground state in the laboratory frame. Such
rigidly rotating clusters of vortices are experimentally investigated in superfluid 3He (see
e.g. [13}).

Thus we can discuss the complete system as consisting of two parts, each in its own_
ground state (see Figs.a—b for the case of Fermi liquid): (1) The matter of the detector
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(a) Vacuum of the Fermi liquid
_within the rotating body at r <
R. This vacuum is rotating to-
- gether with the body and thus
plays the role of the comoving
detector. (b) ”Minkowski” vac-
uum of superfluid outside the
rotating body as viewed in ro-
occupied levels tating frame. In the ergoregion,
ie. at r > r. = v /N, where
(© vz, is Landau critical velocity,
the conducting band crosses the
zero energy level. (c) Tunnel-
ing of particles from the vac-
uum of the detector matter to
the ”Minkowski” vacuum in
the ergoregion produces radi-
ation from rotating body and
excitation of comoving detec-
tor. (d) Transition between the
states in the "Minkowski” vac-
uum due to interaction with the
rotating detector

conductmg band

in its ground state as seen in the rotating frame; (2) The superfluid outside the cylinder
in its ground state (the "Minkowski” vacuum) in the laboratory frame. The radiation
of fermions by the rotating cylinder is described by the rotating observer as a tunneling
process (Fig. c): feumions tunnel from the occupied negative energy levels in the detector
to the unoccupied negative energy state in the ergoregion. The same can be considered
as the spontaneous nucleation of pairs: the particle is nucleated in the ergoregion and
its partner hole is nucleated in the comoving detector. This process causes the radiation
from the rotating body and also the excitation of the detector. From the point of view of
the Minkowski (stationary) observer this is described as the excitation of the superfluid
system by the time dependent perturbations.

Radiation of phonons to the ergoregion. For the Bose case the radiation of
phonons can be also considered as the process in which the particle in the normal Bose
liquid in the detector tunnels to the scattering state at the ergoplane, where also the energy
is E = 0. In the quasiclassical approximation the tunneling probability is e~25, where at
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p. =0
re 11 1 Te
S=1m/drp,:L/R dr iz~ IIn g (7)

Thus all the particles with L > 0 are radiated, but the radiation probability decreases at
higher L. If the linear velocity at the surface is much less than the Landau critical velocity
QR < c, the probability of radiation of phonons with the energy (frequency) w = QL is

2L 2L
e (- (S ()" e

cL

If c is substituted by the speed of light, Eq.(8) is proportional to the superradiant ampli-
fication of the electromagnetic waves by rotating dielectric cylinder derived by Zel’dovich
7,9

[ The number of phonons with the frequency w = (}L emitted per unit time can be
estimated as N = We~2%, where W is the attempt frequency ~ %/ma? multiplied by the
number of localized modes ~ RZ/a?,.where Z is the height of the cylinder and a is the
thickness of normal fluid layer of order of interatomic space. Since each phonon carries
the angular momentum L, the cylinder rotating in superfluid vacuum (at T = 0) is loosing
its angular momentum, which means the quantum rotational friction.

Radiation of rotons and Bogoliubov quasiparticles. The minimal L value of
the radiated quasiparticles, which have the gap A, is determined by this gap: Lyin =
= A/Qpg = vy, /N, where vy, = A/pg is the Landau critical velocity. Since the tunneling
rate exponentially decreases with L, only the lowest possible L must be considered. In
this case the tunneling trajectory with E = 0 is determined by the equation p = py both
for rotons and Bogoliubov quaiparticles. For p, = 0 the classical tunneling trajectory
is thus given by p, = i+/[p2 — L?/r2|. This gives for the tunneling exponent e~25 the

equation
..Im/drp,—L/ dr” ——5~Lln-—-. (9)

Here the position of the ergoplane is r, = L/po = v /§}. Since the rotation velocity §? is
always much smaller than the gap, L is very big. That is why the radiation of rotons and
Bogoliubov quasiparticles with the gap is exponentially suppressed.

Friction due to transitions in "Minkowski vacuum?”. Radiation can occur
without excitation of the detector vacuum, via direct interaction of the particles in the
Minkowski vacuum with the rotating body. In the rotating frame the states in the occupied
band and in the conducting band have the same energy, if they have opposite momenta
L. Then a transition between the two levels is energetically allowed and will occur if the
Hamiltonian has a nonzero matrix element between the states L and —L. The necessary
interaction is provided by any violation of the axial symmetry of the rotating body, e.g.
by roughness on the surface (thus the interaction is localized ar r ~ R). A wire moving
along the circular orbit is another practical example. In case of the rotating vortex cluster
the axial symmetry is always violated.

In the quasiclassical approximation the process of radiation is as follows (see Fig. d).
The particle from the occupied band in the ergoregion tunnels to the surface of the rotating
body, where after interaction with the nonaxisymmetric disturbance it changes its angular
momentum. After that it tunnels back to the ergoregion to the conducting band. In this
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process both a particle and a hole are produced in the Minkowski vacuum, as a result the
tunneling exponent is twice larger than in Eqgs.(8) and (9).

Discussion. The rotational friction experienced by the body rotating in superfluid
vacuum at T = 0, is caused by the spontaneous quantum emission of the quasiparticles
from the rotating object to the "Minkowski” vacuum in the ergoregion. The emission
is not thermal and depends on the details of the interaction of the radiation with the
rotating body. In the quasiclassical approximation it is mainly determined by the tun-
neling exponent, which can be approximately characterized by the effective temperature
Tess ~ hQ(2/In(vr /QR)). The vacuum friction of the rotating body can be observed
only if the effective temperature exceeds the temperature of the bulk superfluid, Teps > T
For the body rotating with 2 = 10 rad/s, T must be below 10~8 K. However, high ro-
tation velocity can be obtained in the system of two like vortices, which rotate around
their center of mass with @ = k/47R? (k is the circulation around each vortex, R is the
radius of the circular orbit).

The process discussed in the paper occurs only if there is an ergoplane in the rotating
frame. For the superfluid confined within the external cylinder of radius R, this process
occurs at high enough rotation velocity, r¢(Q) = vz/Q < Rz, when the ergoplane is
within the superfluid. On the instability of the ergoregion in quantum vacuum towards
emission see e.g. Ref.[10].

If r.(Q) > R..: and ergoregion is not present, then the interaction between the coa.xla.l
cylinders via the vacuum fluctuations becomes the main mechanism for dissipation. This
causes the dynamic Casimir forces between the walls moving laterally (see Review [14]).
As in [14] the nonideality of the cylinders is the necessary condition for quantum friction.

The case of the rotating body is not the only one in superfluids, where the ergoregion
is important. The ergoregion also appears for the lineraly moving textures, where the
speed of the order parameter texture exceeds the local ”speed of light” [15].
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