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The inelastic light scattering in metals and insulators by acoustic and optical
phonons is considered. The ripple and elasto-optic mechanisms are taken into
account. The phonon damping and skin effect are analyzed. The surface contribution
into the cross section is found to be not sensitive to the skin depth. Influence
of carriers on the bulk contribution through the skin effect is essential as well
as through the phonon damping. The recent experimental data for fullerides are
discussed.

1. The inelastic light scattering is a widespread experimental tool in investi-
gating phonon spectra of various systems [1-3]. But despite the large number of
papers devoted to the subject the appropriate theory is still far from completion.
The surface effects seems to be an important problem. Although its significance
was recognized for a long time a thorough description has not been given until
now.

Several papers contain the theory of Brillouin scattering from acoustic phonons
in insulators in more or less transparent manner for different models taking into
account a surface presence [4-7]. On the other hand the inelastic light scattering
by phonons in metals has been investigated less extensively. A few attempts [8,9]
devoted to Raman scattering used the Green function formalism had failed to
consider a sample surface. The theory of Brillouin scattering in metals appears to
be proposed firstly by present authors [10,11] using the straightforward semiclassical
approach. The similar theory for the Raman light scattering from optical phonons
was presented too [12].

Our main purpose is to compare the 1nelast1c light scattering from phonons
in metals and insulators. Since the skin depth in metals is small, the scattering
by the movements on the surface (ripples) has to be taken into consideration.
The surface contribution from the ordinary elasto-optic mechanism should to be
included too.

Let us consider the incident light wave with the frequency w(®) propagating
normally to the surface (along the z-axis) and light wave with the frequency w(*)
scattered in the zz-plane. If w() and w(*) are in the normal skin range and the
polarizations are perpendicular to the zz-plain, the spatial distribution of the field
in metal is determined by the z-component of wave vectors:

C(i,:) = (e(w(i,:))w(i,c)Z/cz _ ksi,.)2)1/2'

There are two mechanisms of light scattering in metal. One (elasto-optic) associated
with the electronic density fluctuations results the following cross section [13]:
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here w? =4xe?n,/m, n, being the density of electrons. The vector components k,
are along the surface, k(i) and k(') are the normal components of wave vectors for
incident and scattered light in the vacuum. We introduce also the frequency and
momentum transfer w = w® —w(®), k, =k — k(. For the considered geometry
ksi) =0. The operator én, can be expressed through the electronic distribution
function éfp(r,t)

6ny(r,t) = (2x )37yy(P)5fp(r 't) (2)
and the effective electron-photon vertex

p(f,nyﬁf p?np:f )

1
Yap(P) = dap + - E (e,n @) +90 T ra(p) — 0

where the sum is taken over all zones n. The subscript f denotes the conduction
band, £fn =€ —en. The factor U(z) = exp(i(1z2—(22) describes the light penetration
into the crystal, where the complex quantity (3 + ¢z =¢®) 4 ¢(®),

The ripple contribution is given by the electromagnetic boundary conditions
at the surface moving due to phonons. As a result the inelastic light scattering
becomes possible without any elasto-optic interaction. The scattering cross section
by ripples has the form:

3)

Porip  _ legy(w®) = 1P kPR 0303

ke . << U (e )l s ) >,
dw(*)do(#) 2x3¢® |k£') +C(¢)|2|k£') +C(‘)|2

(4)
here ul*" denotes the surface displacement. The connection of u)*" with the
acoustic u(r,t) and optical w(r,t) phonon displacements is determmed by the
surface orientation respect to the crystal axes. The result is expressed in terms
of the correlators << u,(s,z=0,t)u,(s,z=0,t) >> and << w,(s,z=0,t)w,(s,z=
0,t) >>, where the statistical average is taken.

2. The correlator (1) as well as the correlator (4) was evaluated in our recent
papers [10-13] with the help of fluctuation-dissipation theorem, the Boltzmann
equation and equation of dynamical theory of elasticity [14]. The following
designation will be used:

{ Eel(knw) 2% .
Lrip(k,,w) - //dz dz' U(z) U*(2') << 8nq(z,k,,w)énq.(2', k,,w) >>
1 — exp(—w/T)

00
le(@®) - 1]* << uf* (k,, w)u* ™ (k,,w) >>

(5)
Both the clasto-optic and ripple mechanisms have the same resonant factors at the
frequency of interband transition, since 7v,, (3) and dielectric function ey, have
the same singularities. For example, in a Drude-Lorents model:

e(w®)y~ 1 - (')2+E 3 —w(')7 (6)
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In the following we omit these resonant factors.
The correlator I,;, for isotropic crystal has the form:

1 k2 wki/s}
Eﬂp(knw) F Im ("_! I (k'z + N‘Z)Z —_ 4k?&[&¢) ! (7)

where p is the crystal density, x; and «x; describe the z-dependence of the
longitudinal ‘and transverse mode amplitude: the real x indicates the mode
decaying into the bulk. The correlator £.; contains the contributions from electron-
hole excitations and from optical and acoustic phonons via the electron-phonon
interaction [10-13,15]. We pay our attention to phonon contributions only.
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Let us comsider initially the Brillouin scattering, ie. the scattering with
excitation or absorption of acoustic phonons (Fig.). For acoustic phonons Kie =
(k}—w?/s},)"/2, where s and s, are the longitudinal and transverse sound velocity.
In the range w < s;k, the imaginary part in (7) arises only from the third term
and has the peak related to Rayleigh wave (the same peak appears in the

elasto-optic contribution):

E:f(k"w) } Cac (8)

T2, (ks w) | = ps((w — srk,)? + T2,)’

where sp is the Rayleigh wave velocity. The acoustic phonon damping includes
the contribution from the electron-phonon interaction

k2 A%(p) "dSp
Tac(k) = —I , 9
(k) me/<vk—i’rp_l>v(2‘l’)3 9)
where A(p) is the deformation potential and Ty 1 is the electron collision rate,

the integral is taken over the Fermi surface. For small carrier concentration n,
[, is proportional to n, since the average of A over the Fermi surface is equal
to zero. One can see from (8) both the elasto-optic and ripple mechanisms give
the similar contributions which are virtually independent of the skin depth. This
result contradicts to the paper [7).

680



In the domain sk, < w < s;k, the narrow continuum associated with "mixed”
mode (with decaying longitudinal wave and nondecaying transverse one) appears
in both electronic and ripple cross section:

I3 (ks w)
ac (k., w)

, b (18— o) = 2 e (10)
f'?

The first term in (7) gives the additional ripple contribution (nonsymmetric
transverse resonance) absent in X

2
sek, Re (w? — s?k2 + 2iT,.w)~ Y2, (11)

(ks w) =

rip
It is produced by transverse phonons slipping along the surface. Finally, in the
range w > s1k, we have wide nonsymmetric longitudinal resonance due to the
electron-phonon interaction and the continuum by the ripples:

sk} 2 212 . -1/2
ac — =2 _—_Re (w* -3 k; + 2iT,.w / ,
:',_.(2‘12’“2) }’: R ) (12)
rip\ ™)

(w? — s2E3)V/3/ psw?.

The first and second terms in the brackets (7) are absent in [6,7]. We derive them
from the ”bulk” part of the phonon Green function. The last term in (7) arises
from the ”"surface” part. The entire Green function obeys the elastic equation for
‘the semi-space z >0 and the boundary condition at z=0. .

The elasto-optic cross section contains also the contribution from bulk phonons.
For the normal incidence and scattering the only longitudinal phonons are involved.
The corresponding peak is sharp when the skin depth is small {; >> (5

G1
— 2,3 for 31(2 >> rao:
o ks ) = pllw — 161)* + sf(3] (13)

(lrac
{ << Tye.
pnGalw - aC)? 112, °F %G

For the nonperpendicular incidence and scattering the bulk transverse phonons
are excited too giving the peak with the same form (13) multiplied on
min(k? /2, C3/K2).

3. The Raman light scattering from optical phonons can be analyzed similarly.
To find the optical part of the correlator (4) we apply the elasto-optic equation
taking into account the electron- optical-phonon interaction [11,12]. After the
evaluation we obtain the expression (7) with x[% = (k¥ — (w? — wf,)/a1¢)"/2. Here
wi,e and are define the bulk optical spectrum wy¢(k)? -w,27¢+a1'tk2. The dispersion
parameters a;, are of the order of s> and may get an arbitrary sign. The surface
optical phonons exist when x;* and «;” are both real. On the contrary to the
acoustic case there are two branches of optical surface phonons [12] for the case
of two atoms in an elementary cell. Each of them results a strong Lorentzian
peak:

2 knw) r min(pfh/ CI", p3/42)
E‘r)?p(knw) } ~ ps((w] —w,g;,))2 +T2) { g 1 ¥ (14)
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were w,(k,) are their spectra. The optical phonon damping was evaluated selfcon-
sistently [12] and has the form: '

€(p) dSp
w— vk + i‘r;l v(27)3’ (15)

1
I‘op(k)=—$lm/ <

where £(p) is the optical deformation potential. The electron-phonon interaction
gives also the optical frequency shift:

P / (iy! = vk)E*(p) dSe
2pw w—vk+4ir, ' v(2x)3

(16)

The various nonsymmetric resonances and continua appear near the frequencies
which obey x; =0 or s =0. The detailed analysis is rather sophisticated and
depends on the relations of spectrum parameters.

The optical bulk peaks arise only in elasto-optic contribution. For example,
the shape of the longitudinal phonon peak has the form:

prlop '
for s(; << Toppr/(1,
ps(a[(w — (W + ai(})1/?)? + T2,
Ez’(knw) = p2 (17)
F

for s >>T .
Pl [(w — (w? + al(f)l/2)2 + 3?(3?] (2 opPF/(1
In the last case, when s(; >> Toppr/(1, an additional peak controlled by the
singularity of the phonon density of states appears:

TP (k,,w) =~ Re (w? — w} + 2iTopw,)~ /2 (18)

—_Pr _
ps(¢f +¢3)
This peak has the nonsymmetric shape. Iis symmetry changes simultaneously with
the sign of a.

4. In the experiments the incident light frequency is taken usually in the
transparency range to increase the penetration depth. Now let us imagine that
the number of carriers grows in a sample. The experimental results on fullerides
[16] show that the most of vibrational modes disappear for the metallic phase
A3Cs0 in comparison with the Raman spectra for the insulator phases Cgo and
AgCe0. One can propose the two explanations for this phenomenon. The first
one suggests the strong influence of carriers on the skin depth: the doping can
make the dielectric function (6) to be negative at incident or scattered frequency.
In this case {3 ~ (; and all the bulk peaks (13), (17)-(18) became unobservable.
The acoustic surface resonances (8)-(12) and optical surface ones are still exist.

The alternative explanation involves the effect of carriers on the phonon damp-
ing. As one can see from (9), (15)-(16) the interaction of carriers with phonons
results the broadening and shift of the peaks. The electron-phonon damping can
be forbidden by selection rules. For example, if the optical phonon polarization
is perpendicular to the vector of deformation potential, the damping and shift are
equal to zero (15)-(16). Indeed, the experimental data demonstrate the broadening
and shift of most peaks. Complementary data to the Raman studies come from
inelastic neutron scattering. Here the skin depth should not affect the neutron
spectra. To our view the data [17] seem to be unable to choose the scenario.
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