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We discuss the method of parametric excitation of electromagnetic waves
in a cavity (particularly from vacuum state) by creating of dense plasma layer
which represents the "mobile” wall of the cavity. The mobile plasma layer may
be produced by the irradiation of semiconductor film with femtosecond laser pulse.
Parametrically excited radiation may be resolved from radiation of another origin by
analysis of it’s squeezing, specific angle distribution and by time resolved registration.

1. Introduction

We discuss the parametric excitation of electromagnetic waves in the cavity (in
particular from the initial vacuum state) by use of power femtosecond laser pulses.
The idea is to create dense electron-hole (¢ —h) plasma in thin semiconductor film
at a small time interval by irradiating it with power femtosecond laser pulses. The -
surface of such plasma may be considered as the mobile wall of the cavity. Both,
this plasma layer and fixed metal mirror represent the cavity with one mobile wall
(see Fig.1). The effect of - .- unetric excitation of electromagnetic field due to the
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Fig.l. Emission of cavity modes due to the parametric excitation: a) before excitation, b) after
excitation; I -— metal layer; 2 — dieleétric slab; 3 — semiconductor film; 4 — gap; 5 —
dielectric prism; w;", w; (w{, wf) are vacuum cavity modes before (after) excitation; fsP is
exciting femtosecond laser pulse; E is the light radiation due to the parametric excitation, c)
another realization

motion of one of the cavity walls is essential for ultrashort time 7 of displacement
of the mobile wall. So using of femtosecond laser pulses in experiment proposed
is justified. We consider the new regime of parametric excitation when 7 is
comparable with the time of propagating of light from one wall of the cavity to
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another: 7~ %, where L is the length of the cavity?). This regime is opposite to
the case 73> & considered before (see e.g. [2-4] and references herein).

In this case no stationary picture of distribution of electromagnetic energy in
the cavity exists. It occurs that the value of excited energy E in the cavity
depends on the whole history of the process, namely, the whole displacement of
the mobile wall of the cavity.

In the present article we calculate in the framework of quantum electrodynam-
ics in the cavity the parametric excitation of electromagnetic field in particular
from vacuum state in case of instantaneous and also adiabatic slow excitation.
Besides, the classic approach is considered. The angle distribution and the quan-
tum statistical properties (squeezing etc.) of parametrically excited radiation are
described.

2. Basic relations

We consider electromagnetic field in rectangular cavity with time-dependent
length L, = L.(t) but L, =Const and L, = Const and suppose that quality @ of
the cavity is infinitely great. (We suppose also to be specific that in time t <o
and t>to+ 7 the wall is at rest and that at o <t < to+ T the velocity L, < 0,
1.e. size of the cavity is diminished. Note that phenomena considered below takes
place also for more general dependence L,(t)). This leads to simple boundary
conditions for that cavity modes which have the vector E parallel to zy plane
(see also [2]): Al,=r,)=0 where A is the vector-potential.

The expression for the energy in the cavity with time-dependent length L,(t)
in case divA =0 is:

(1)
L. L . 2
E= Z,,"’Z / ('aﬂz“f‘”ﬂaﬂ +et | == =0
o

q

dag lz) . zLxLy Z a‘an z=L.(t)

()

where aq are the 2D Fourier-transforms of A in zy variables and vector q = (kz, ky).
To get out the time-dependent boundary conditions it is natural to use variables
u={¢(t)z where £(t)=L;/L.(t). In that variables the wave equation for components
bg(u,t) =aq(z,t) of vector potential A on the condition divA =0 takes the form:

where
~ 8 8 =~ & 3
A= gy lonte) + €Oz B= g+ funtt) —et(Olz and )= ¢

3. One-dimensional case |q| <k,
In the case |q| < k; Eq.(2) may be transformed to the form ABb=0 and
so may be reduced to the first order equations in partial derivations Ab=0 and
Bb=0. For modes with w € 1/7 one can find:

2) Different phenomena in QED in the cavity due to the gquasi-stationary modulation of the
wall (Lamb shift modulation etc.) see for instance in [1] and references herein.
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t
b(u,t) =C~ exp [ik,u :Fifw(t')dt’] , to<t<tn,
to

t
b(u,t) = C*exp [ik,u Fif w(t')dt'] y tm<t<to+T,

tm

where C* are the constants (C* ¥ C~); the value t,, is defined by the equation
L.(t)=0 (to <tm <to+7); 7 is the time of displacement of the mobile wall and
w(t) = ck,&(t). The upper sign corresponds to the equation Ab=0 and the lower
one to Bb=0.

Because of AB = BA the linear combination of solutions of equations Ab=10
and Bb=0 is also the solution of Eq.(2). Taking into account boundary condition
A |.=L,(y)=0 one can write:

b= (L") EC,: sin(k,u)e™ f, ¢ <to,
(3)

b=({ ")%E( N sm(k u) i '+C sm(k,u)e“""ﬂ), t>to+ T,
%

where w™ =c¢k, and wt = ck,%—l—. The value L is the length of the cavity in
z direction in coordinate (u,t) (in coordinate (u,t) we have L = Const). By
comparing two solutions (3) at t=t,, =0 one can find:

+ = - _1. 21 w
Ch,=Cra Ve +Vior )

+ = - l .‘i — w™
CZk. Ck. 2 V w= V wt

If we substitute the solution (3) at time t > tp+ 7 into Eq.(1) on condition that
b(u,t) =a(z,t) we find:

E=Y | wtn, (4)
ks ’

where:
L)+ @)
‘Yk = _
4 wtw—

In opposite case w >>} one can find the exponentially small effect of excitation
Vi ~ _(l +e-—21r‘rw ).

These results take place only when 7 ~ L/c and in principle differ from that
one found in [2-4] for the case 7> L/c.

4. Three-dimensional case |q| ~ k,

If [q] ~ k. one could not divide Eq.(2) into two first order differential

equations.  But for long wavelength modes with polarization parallel to =zy

plane in case §L/L < 1 one can use Eq.(4) but now wy = cy/|q)® +k2 and
wf =C\/]q|2+(L—/L+)2kZ. In result one can find:

E=Zlck’2w:‘/k ~ V+/dﬂ / 2,‘”:‘/1 -+ ACOSZ(G)Uowa, (5)
k Wain
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C 2
where U, = ij—z—kl)—,w:’ is the initial spectral denmsity of radiation; V* is the final

volume of the cavity; w=w;; A= -I-’l:;j‘r[’;z—; d? is the differential of solid angle
and @ is the angle between wave vector of the cavity mode and the direction
of displacement of the mobile wall. The low limit wmin of integration in Eq.(5)
depends on the size of the cavity L™: wmin =7c/L~. The upper limit wy,., is
different in two cases w < 27 /7 and w > 2n/T.

In the case w « 27 /7 ("instantaneous” approach) one have wpmer = 27/7 and
the value vx equals to: ’

_1 2 + Acos?(8)
™3 V1 + Acos?()

The quantity vi(A,6) represented in Fig.2 describes the angle distribution and
effectiveness of excitation of eigenmodes of the cavity.

(6)

2774.9)

Fig.2. Reclative spectral dersity of radi-
ation U, /Un, = 2y, as a function of A
and observation angle 8 in instantaneous
approach

In the other case w > 2x/r ("adiabatic” approach) one have wpax = co and
the value v, equals to:

1 -
i ~ _2_(1 +e—21rru ) (7)

5. Quantum consideration

1. Instantancous approach w <« 2r/r. Suppose that the initial state of the
field is vacuum state. Quantum calculation for the model in which the frequency
of each of the cavity modes is changed instantaneously from the initial value
w™ =w (L7) to the final value wt =w*(L*) (ie. w « 27/7 where w is the
frequency of the cavity mode) gives the expressions having the form of Egs.(5),(6),
but now lelz = 3h. The total energy excited from the initial vacuum state is (in
order to omit the energy of ground state we replace v, — v — 1/2):

— "O6rh
6E=V+c—3;zI1(A) (8)

where I;(A) ~ A%/40 at A K 1.

2. Adiabatic approach w > 2r/7. In the case w > 2x/7 the electromagnetic
field in the cavity is described by Schrédinger equation for harmonic oscillator with
slowly changing frequency. It leads to relations (5) and (7) obtained in classical

approach with lelz =3h. After integrating one have:
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6% winin — 2T Wiy
(27c)3 r© L(a)
where I1(A) ~ L(A) ~ A%/40 at A K 1.

The value 6E in both cases w < 27/7 and w > 2w/ obviously equals to the
work of nonstationary correction to the (stationary) Casimir force during the time
of displacement of the cavity wall (see e.g. [5]).

6. Specific propertics of ficld’s state after parametric excitation

The state of the field produced by the parametric excitation from the initial
vacuum state is different from the electromagnetic field of another origin (which
may appear in experiment) because of only even quantum levels are populated
and specific distribution of wave packet in phase space takes place in the former
case. These states are squeezed in the phase space in the direction of canonical
variable P:

S§E=Vt

(AQ% =& (m + VAE-174)
(AP?); = huwy (’Yk - \/W) .

In result the uncertainty relation has the form: (APH{(AQH: = h/2 (last
expression for oscillator with parametrically driven frequency was found in [6]; see
also [7]). The states originated from the parametric excitation have some similarity
to Schrédinger cat states, but the corresponding population of quantum levels is
not a Poisson one.
7. Conclusion

Let now consider the possible experimental manifestation of the analyzed phe-
nomena. By use of power femtosecond laser pulses one can produce rather dense
{e—h) plasma in short time interval 7 in thin semiconductor layer of width I, (see
Fig.1) The initial length of such resonator is: I, +1;, where [; is the thickness of
the gap (insulator film)} and the final length is ;. Then we have 7 ~ I, /v where v

is the velocity of electrons in plasma and A = (I'HI"?):-H ~ 2, /l; < 1. The velocity

v ~ 10%cm/sec is attainable for appropriate laser frequency (v ~ (ﬁfflﬂ)z,
where E,; is the energy gap for superconductor). If the value I, is smaller than
the extinction length for the excitation pulse then the plasma born simultanecusly
on the whole film. In the last case the parametric excitation of the electromagnetic
field takes place due to the change of the transmittance of the semiconductor film
(details well be published elsewhere). In the latter case the characteristic time 7
is defined mainly by the form of the laser pulse.

The energy of the field after the parametric pumping (see Eq.(8)) is strongly

depends on T:
- 3ux? (1,\°
~vVv+t_ (=
SExV 5574 (1.') .

For example for I, ~ 10%A, I; ~ 10°A and 7 ~ 10~ sec (it is attainable pulse
time), Amin ~ 3-10"%cm. For I; ~ 10°A we find: E/Vt ~ 1.6- IOGeV/cm3 and
N/V* ~ 5.10°photons/cm®. Note that the estimates given above are really upper
estimations (for infinite quality @ of the cavity). Taking into account the dielectric
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susceptibility ¢ of the medium in the cavity one can obtain additional multiplier
€3/2 in the estimate for the excited energy.

It occurs that the angle distribution of the parametrically excited radiation
(which describes by the dependence ¥ = 4(@) where 6 is the angle between the
direction of radiation and z-axis; see Fig.2) is different from that one of radiation
of another origins appearing in experiment. Because of small time of pumping,
parametri-ally excited light appears in time interval v which is shorter than ome
required for appearing of radiation of another origins. These specific properties as
well as quantum statistical properties described above (population of even levels
and s ..czing) may be used to distinguish parametrically excited field from other
electromagnetic radiation in experiment (see e.g. [8,9]). '

1. A.A.Belov, Yu.E.Losovik, and V.L.Pokrovsky, ZhETF 98, 552 (1989); J. Phys. B 22, L101
(1989); Yu.E Losovik, Proceed. I-st Sov-British Symp. on spectroscopy, Moscow, Inst. of. Spectr.,
1986. '

G.T.Moore, J. Math. Phys. 11, 2679 (1970).

R.IBaranov and Yu. M. Shirokov, Zh. Exp. Theor. Fis. 83, 2123 (1976) [Sov. Phys. JETP
28, 1199 (1968)).

S.A.Fulling and P.S.W.Davies, Proc. R. Soc. Lond. A 348, 393 (1976).

V.Man'ko, Preprint INFN-IV-52/94.

J.Janssky and Y.Y.Yushin, Opt. Commmun. 52, 151 (1986).

O.Castafios, R.Lépes-Pefia, and V.IMan'ko, Phys. Rev. A B2, 5209 (1994); Proceed. FIAN
183, 119 (1987).

M.Brune, S.Haroche, J M.Raimond et al,, Phys. Rev. A 45, 5193 (1992).

. B.Yurke and D. Stoler, Phys. Rev. Lett. 57, 13 (1986).

W

©E Noa

716





