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The orbital momentum of the axisymmetric textures and vortices in fermi
superfluids and superconductors is discussed on the example of *He-A. If there
are no zeroes in the quasiparticle spectrum, the orbital momentum of the texture
is robust, ie it is not sensitive to the change of the texture, provided that the
axial symmetry is not violated. If zeroes exist or there is an anomalous branch
of the low-energy fermions in the vortex core, the orbital momentum depends on
texture. This dependence comes from accumulation of the fermionic topological
charge induced by the texture. The change of the orbital momentum in texture
occurs by spectral flow through the nodes or along the anomalous branch.

1. Introduction. Axial symmetry charge

Here we consider the static orbital angular momentum of the axisymmetric
distribution of the order parameter in Fermi superfluids and superconductors. We
apply the general approach of the spectral flow, which is valid both for quantized
vortices in conventional superconductors and 3He-B, where vortices have singular
cores, and for the continuous order parameter texture, which can exist in 3He-A.
The obtained general result, when applied to the 3He-A texture, allows us to treat
the angular momentum paradox in 3He-A.

The paradox of the orbital momentum in Fermi pair-correlated states has a long
hystory, started in 1961 when Anderson and Morel[l] introduced the anisotropic
state further realized as the A-phase of superfluid 3He. Each Cooper pair in
this state has an orbital momentum #l, where 1 is the unit vector of the orbital
anisotropy. Estimations of the total angular momentum of the system varies from
{N/2)Rl, which corresponds to the momentum h/2 per each of N particles of the
system (see [2]), to much smaller quantity ~ N(A¢/Er)?hl (see recent paper [3],
here Ao is the gap amplitude, which is much smaller than the Fermi energy Er).
The latter estimation corresponds to the space integral of the intrinsic dynamical
momentum, found by Cross [4], which is related to the inertia of ihe 1 pirecession.

We show here that this paradox is closely related to the axial anomaly, which
appears either due to zeroes in the quasiparticle spectrum [5-7] or due to quantized
vortices[8]. In both cases the spectral flow through the gap nodes or along the
anomalous branch of fermions within the vortex core leads to accumulation of the
orbital momentum. The latter plays the part of the topological charge induced in
the Fermi sea by the texture of the order parameter (on the fermionic topological
charge formalism in superfluid 3He see [6]).

The relevant fermionic charge in the axisymmetric system is related o the
residual symmetry of the system. This is the generalized angular momentum,
expressed in terms of the angular momentum and the particle number operators

935



(see eg review [9]):

Q=L,—(n/2)N . (L.1)

Here n is an integer: n =1 for the homogeneous A-phase with 1= 2, where
the rotational symmetry SO(3), is spontaneously broken together with the gauge
symmetry U(1)y, but the combined symmetry with the generator Q =L, — (1/2)N
is conserved. This means that the action of Q on the (multicomponent) order
parameter ¥ annihilates the order parameter: Q¥ = 0, ie the A-phase order
parameter does not change if the rotation is accompanied by the proper gauge
transformation, which is generated by N and leads to the change of the phase of
the order parameter.

The Eq.(1.1) can be also applied to the inhomogeneous vacuum [9], eg to
quantized vortices in conventional s-wave pair-correlated state: in this case n is
the winding number of the vortex. In the inhomoheneous case the generator L,
contains two terms: L, = Linternal y Jexternal = yhere [internal jg the generator of
the orbital rotations in the order parameter space (in the isotopic SO(3)r group),
while Lextenal = _jr x 8. is the generator of the coordinate r rotations. The
axisymmetric, or Q-symmetric state means that Q¥(r)=0.

This symmetry of the vacuum tells that @ is the conserved and integer (or
half of odd integer) quantum number, but this does not mean that the @Q-charge
of the vacuum should be exactly zero. In the pure fermionic description (Section
4) the total charge of the vacuum is

<vac|Qlvac >= 3 QO(=Fqp..s) (1.2)

L2} P

where Eq .., are the energy eigenvalues for fermions in the axisymmetric field of
the order parameter (in addition to the quantum number @, there are the other
quantum numbers: the linear momentum p, along the symmetry axis z, the radial
quantum number s, etc.); 6(—Eq,, ,) is the step function of the energy, which
shows that only the negative energy states contributes to the vacuum charge. The
charge of the vacuum can be nonzero if some descrete symmetry is broken and
EQp.s 7 E-Q 1ps,s-

One can find the condition when this charge is zero, which for the A-phase
state means that the total angular momentum L, =< vac|L,|vac >= (n/2)N in
accordance with Ref.[2]. This condition is related to the adiabatic process, which
means that during the process there is no level flow from or into the vacuum state
and thus the fermionic charge is conserved in this process. This takes place for
example if there is a gap in the fermionic spectrum. For the A-phase state this
occurs in the limit case of the Bose condemsate of the isolated Cooper molecules
each with momentum % (or in a thin film where the gap nodes disappear due
to transverse quantization, see Chapter 9 of Ref.[7]). Let us start from the Bose
condensate as an initial state, which has Q@ =0 (and thus L, = N/2), and transform
this state adiabatically into the real 3He-A without violation of the axisymmetry:
then in the final 3He-A state one also has Q =0. The problem is, however, that
during this continuous transformation the gap nodes appear at some moment and
the process can loose the adiabadicity, since the spectral flow through the nodes
can emerge in the bulk liquid or at the boundary of the system.

We consider how the spectral flow leads to nonzero @ in the vacuum state
of the axisymmetric texture in the arbitrary pair-correlated system and apply the
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result to the continuous vortex in the A-phase. This is the simplest quantized
vortex, in which the microscopic calculations (Section 4) can be completed and
compared to the phenomenological hydrodynamical approach (Section 3). But let
us first recall how the spectral flow modifies the linear momentum in the A-phase.

2. Linear momentum anomaly in 3He-A
Let us start from the Bose condensate of the isolated Cooper molecules with
the symmetry of the A-phase or from the A-phase state with negative chemical
potential u < 0, which fermionic spectrum E = /(p?/2m3 — u)? + c2(1 x p)? also
has no nodes. One can adiabatically transform these two states into each other
and therefore they have identical properties. The mass current (or the density of
the linear momentum) in these node-free superfluids at T'=0 is

) k 1~
Jnode—free = mpv: + iv X Lnodc—frec . (21)
The first term is dictated by the Galilean invariance, here v, is the the superfluid
velocity in units of A/2m3. The vector L is the density of the angular momentum,
which for the nodes-free states is

h
Lnode—_free = "Z'Tn—sp 1 . (22)

Let us now continuously transform the node-free liquid into the real A-phase
by changing the chemical potential from negative to positive. At g > 0 the gap
nodes appear at two points p =+prl where p%/2m3 = pu. Near each node the
fermions can be described as chiral Weyl fermions moving in the ”electromagnetic”
field A = ppl produced by the 1 texture[7]. If (8;A-(V x A )) #0 there is an
effect of axial anomaly [10]: the spectral flow of fermions leads to creation of
quasiparticles from the vacuum. In 3He-A each created quasiparticle carries the
linear momentum pgpl. This results in the production of the net quasiparticle
linear momentum:

1 -
8thp = '2? /ds’l‘ pFl (¢9¢A . (V X A )) . (2.3)

Since the total linear momentum is conserved, this means the transfer of the
momentum from the collective variables of the order parameter to the system of
quasiparticles.

Let us take the arbitrary but fixed I(r)-texture in the node-free state and
consider the transformation into the real A-phase in such a way that only u
changes with time. At some moment f=1{%; the Fermi momentum appears which
then changes from pr =0 at t =1ty to its equilibrium value pp(co) in the real
A-phase at t=oo. In this process 9;A =19;pr and one has the following change
of the total momentum of the texture as compared to Eq.(2.1)

t

oo 1 o0 -
P(oo)—P(t0)=~—/ dt a‘P‘"’=_ﬁ/, dt/dsr pLdpr 1 (1-(V x1)) =

1 - 1
=—§/d3r Col (1-(¥x1)) , Co=s5zph(xo) (2.4)



where P(tp) = fd3r Jnode—free is the anomaly-free momentum in Eq.(2.1). The
extra mass current in the A-phase

. 1 -
Janomaious = — ‘2‘001 (l . (V X 1 )) . (2'5)
resulis from the helicity of the A field (on the role of the helicity in particle
physics see ref.[11]).

3. Angular momentum of the 3He-A texture: phenomenological approack
Let us esiimate the Q-charge of the vacuum in the A-phase for different con-
tinuous axisymmetric l-textures, which can be obtained by continuous deformation
of the homogeneous vacuum with 1=2.
The general solution of the axisymmetry equation Ql(r)=0 for the 1 texture is

1=2cosn(r) +sinn(r)(Fcos a(r) + psin a(r)) . 3.1)

We take n(0) =0 to have 1(r=0)=7% in the center of the vessel, this is required
by the continuity of the deformation of the homogeneous state with 1= 2.

If n(r = ro) = m the texture represents the continuous Anderson-Toulouse-
Chechetkin 47 vortex in 3He-A [12] with

1 1 = 1
= V= — -V s = = . )= 2 ) .
n 21r£>rud1' v 27I_/dS X v 21r/da: dy 1-(8;1 x 81) (3.2)
and with the core radius r;. Here we used the Mermin-Ho relation [13]
~ 1 - =
V x Vs = Tei'.‘ikliVIj X Vlk . (33)

and the expression for the topological invariant which describes the mapping
5% — S? of the vortex cross-section to the sphere S? of the umit vector 1-1=1.
The invariant shows that within the continuous 47-vortex the whole area 4x of the
sphere is swept once. For simplicity further we consider the coordinate independent
a.

In the phenomenological description the orbital momentum is given by the
momentum of the current: L= [d3 r xj. The integration of the regular terms,
Eq.(2.1), after integration by part and using the boundary condition p(R)=0 (there
is no particles outside the vessel of radius R), gives the standard contribution to
the angular momentum: L,(regular)=1N. Thus the charge Q of the axisimmetric
vacuum is given by the orbital momentum of the anomalous current:

< vac|Q|vac >=/d3r 2 - (r X Janomalous) = —% /dsr Co (2-(rx 1) (1(6 x1))=

sinn cosn

) (3.4)

(hete L is the length of the vortex). This means that if the 1 texture contains a
helix (ie if sina 7#0) the total momentum of the vortex texture in the A-phase is
reduced as compared with (1/2)N calculated for the node-free models.

In the following Section this phenomenological expression is rederived from the
general expression obtained using the spectral flow along the anomalous branch of
the fermions localized in the vortex core.

To
=—7rL/ dr r2Cpsin®asinn (9,1 +
0 .
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4. Orbital momentum from fermion zero modes on vortices
In particle physics the fermion zero modes on strings are the p,-modes, ie they
correspond to branches of spectrum of fermions localized in strings, Egqp, s, which
cross zero energy as a function of continuous parameter p,. For the condensed
matter strings, vortices in the pair-correlated systems, the important zero modes
are Q-modes [14], the branches of spectrum Eg,, ,—0, which cross zero energy
as a function of parameter Q. In most cases the charge @ can be considered
as continuous. The @Q zero modes in condensed matter have the property of the
p, modes in particle physics: the algebraic sum of zero modes is nonzero and is
defined by the winding number n of the vortex [8]. This means that the number
v of the negative fermionic levels with given p, is different for large positive and
large negative Q:
v(p:, Q@ = +o00) — v(p;, Q@ = —00)=2n , (4.1

and the branch Eg,, ,—o crosses zero at some Q =Qo(p:)-

In the most symmetric vortices Qo(p.) = 0, ie the energy spectrum of the
fermions on the anomalous branch, Eg;, ,=0 = Quw(p.), crosses zero at Q = 0.
However, if some discrete symmetry is broken in the vortex core, then Qo(p.) #0.
Such situation was found in the continuous vortices in the A-phase if the helicity
of vector 1 is nonzero [15]. According to Kopnin [15, 16]

QO(pz) =7'(pz) sin a Vpi" "pf ’ (42)

where r(p,) is the radius at which

cos n(r)= 5‘; , (4.3)

and lowest energy levels with the radial quantum number s =0 are given by

Ao
E =Q)=— "0
(@p:y5=0) pr r(p:) cosa

(@ — Qol(p:)) - (4.4)

Though Q is discrete, the distance between the Q levels Ay/(pr r(p;) cosa) is
very small compared with the gap amplitude Ay, which means that the effective
Q is large and can be considered as continuous.

Since Qo(p,) depends on sina, during the evolution of the vortex structure, Q
levels cross the zero energy and this leads to the accumulation of the charge Q
in the vacuum, which was phenomelogically discussed in Sec.3. In terms of the
fermionic levels the rate of the charge @ production

8 < vac|Qlvac >= Z Qov(Q,p.) , (4.5)
Q.p=

can be found from the following consideration. If one changes Qo(p;) due to the
modification of the vortex, eg due to the change of a, the rate of the flow of
the Q levels through zero is 8;Qo(p.). Since at each event the charge Qo{p.) is
transferred from the vacuum to the fermionic degrees of freedom, the total rate
of the charge transfer is

8¢ < vac|Q|vac >= Z Qo(p:)9:Qo(p.) - (4.6)

Pz
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Thus if one starts from the most symmetric vortex and continuously transfers this
state into the vortex with broken symmetry, one obtains the following general
result for the charge @ of the vortex:

1
< vac|Qlvac >= 3 ; Qip.) - (4.7)

Now we can apply this general result to the A-phase vortex. Using Eq.(4.2)
one obtains the @ charge of the helical texture:

< vac|Qlvac >=sin’a L /%;:— r*(p.) (p% —p?) . (4.8)

Omne can show that this is just the Eq.(3.4). According to equation (4.2), the
function r(p.) is the inverse function of p,(r)=pr(r)cosn(r). Adding to Eq.(4.7)
the factor l==f0R dr 8(r—r(p.)) (where R is the radius of the vessel), one obtains

R
[3 7w b -sy= [ 2 [Car st G0 6} -2

1 (R :
=5 [) dr r’ph(r) sin’y 8,(ppcosn) =
1 R P2
=% / dr [ #2ph(r) sin’n 8,cosn+r’sin®n cosp 3,—3£ ] (4.9)
0

The second term is integrated by parts using the condition pr =0 outside the
vessel and one has

dp. 2 gy 1 T 2.3 . sinn cosn
/2‘” r (pz) (pF—pz) 3‘; ‘/0 dr r Pp SII7 (317?+_‘_"

) . (4.10)

which corresponds to Eq.(3.4).

5. Conclusion

The orbital momentum of the axisymmetric vacuum in the pair-correlated
fermionic system is L, = (n/2)N + Q, where N is the number of particles, n is
integer and Q is the conserved fermionic charge in the axisymmetric vacuum. In
the presence of the gap nodes the charge Q is given by Eq.(4.7) and depends on
the texture. The gap nodes, which give rise to Q@ ¥0, can exist (i) in the bulk
liquid (like in the A-phase); (ii) within the core of vortices; (iii) on the surface
of container (the effect of the surface will be discussed later). When the texture
changes, the charge Q is accumulated by the flow of Q levels through zeroes.
This occurs only if some discrete symmetry is violated in the texture; in 3He-A
the effect exists only in the presence of the helical texture, ie with 1-(V x1)+0.
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IMoctynwna B pemakiwmmo 27 anpenss 1995 r.

PacueTnl OJNEKTPOHHOI CTPYKTYPbl CHIBHOKOPPEIHUPOBAHHBIX CHUCTEM, BBIMOIHEH-
nple "slave-boson”-METOROM, COMOCTaBNEHBI C TOYHBIMM UMCIEHHBIMU PEINEHMSMH s
KOHeuHbIX kiuacTepos. [Iloka3aHo, uro "slave-boson”-mMeTon €4B/SIETCS OYEHb XOPOLIMM
NpUGIMXKEHHEM [IPY MCCAEA0BAHMM HE TOJMBLKO ONXHO30HHOM, HO M MHOTO3OHHBIX MOAEsEi
XaG6apna, no3BoAss ONPENE/IMTb XaPAKTEPHCTMKM OCHOBHOrO COCTOSHMS € TOYHOCTBIO
~ 1%. BouisBreHb! npuuMHbl OGHAPYXEHHOrO B [6] CWIbHOTrO pacxoxgieHus "slave-
boson”-METONA € TOUHBIM PELISHHMEM.

B mnocieanve rogel 3HAYNTENABHOE BHUMAHHUE YACHSETCS HCCAEAOBAHHIO CHIb-
HOKOPPEMHMPOBAHHBIX COEOWHEHHH, K KOTOPHIM OTHOCHTCSI, B YaCTHOCTH, BHICOKO-
TemnicpaTypHbeic cBepxnposonnuku (BTCII), cucreMH ¢ TaxensiMu depMuOHAMH,
MATHUTHBIE TIOJYIMPOBOAHMKA M Np. BBUAY HMCKIIOUMTENBHOR CJAOXHOCTH TEOPETH-
YECKOr0 ONMCAHMS 3SMEKTPOHHOM CTPYKTYPH TAaKHX COCIHHCHHH (naxe Ha OCHOBE
YTIPOLNICHHHX MOAEJbHBIX TIaMWIBTOHMAHOB) B JIATEPATYype OOHYHO HCHOMB3YIOTCH
pasauuHbe TpHOIMXKEHHBE NOIXONB, INOCKOJBKY TOUHbIE DEIICHHS YAAeTcd MOJy-
YATH TOJBKO UYWMCJIEHHO ¥ JIMIIb Juis HeGospmux xsacrepos [1,2].
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