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Advection of a passive scalar # in d =2 by a large-scale velocity field rapidly
changing in time is considered. The Gaussian feature of the passive scalar statistics
in the convective interval was discovered in [1]. Here we examine deviations from
the Gaussianity: we obtain analytically the simultaneous fourth-order correlation
function of §. Explicit expressions for fourth-order objects, like {(8i — 62)%) are
derived.

Advection of a passive scalar § by an incompressible turbulent flow is one of
the classical problems in the theory of turbulence. The problem is related to
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statistics of temperature or impurities in the flow. The dynamics of the passive
scalar is governed by
(at'*‘uava'_mA)g':‘ﬁa (1)

where the velocity u and the pumping ¢ are random functions of i and r, x 1s
the diffusion coefficient. Correlation functions of 8 should be treated as averages
both over statistics of ¢ and u. Batchelor [2] was the first who considered the
problem for a long-range velocity field. He found the pair correlator of the passive
scalar in the case where velocity field is very slow. Kraichnan [3] considered
the pair correlator in the opposite case of a velocity field changing in time very
rapidly. A theory for any finite correiation time of the velocity field was proposed
in [1]. It was proved there that whatever be the statistics of the velocity field, the
statistics of the passive scalar in the convective interval approaches Gaussianity as
one increases the Peclet number (the ratio of the pumping scale to the diffusion
one).

In the present letter we aim at finding explicitly the fourth-order correlation
function of the passive scalar in Kraichnan regime. We assume that the source ¢
is é-correlated in time and spatially correlated on scale L:

(¢(t1, r1)o(t2,r2)) = 6(t1 — t2)x2(r12), (2)

where x3(r) tends to zero at r » L. We choose the simplest smooth form of the
pumping

xa(r) = P,L*/(L* + r%), (3)
where P; is the production rate of 2. A variation of the shape of £2(r) at r > L
will keep all the values of interest to be intact at r <« L. The statistics of a
velocity é-correlated in time is completely defined by the pair correlation function
which at dimension d=2 equals

(ua(t1yv1)up(tz, r2)) = 6(t1 — t2)[DL3bap — Kap(ri2)] (4)
Kap(r) = D(36a/31’2/2 — r,,rﬁ) , (5)

where the incompressibility condition V-u=0 is taken into account. Here D is
a the characteristic strain describing the strength of the velocity field, L, is the
velocity correlation length (the size of the largest vortex) which is assumed to be
the largest scale in the problem. The expression (5) is correct at r « L.

Simultaneous correlation functions of 8 satisfy separate linear equations [4-6].
The equation for the pair correlation function f(jr; —r3|) =(6:16;) can be solved
explicitly for arbitrary r. For separations r > rq, where ry =2,/x/D is the
so-called diffusive length, one gets .

£(1) = 5 (14 I /2%) + (/) In(1 4+ 72/I7)} . (6)

The equation for the fourth-order simultaneous correlation function of the passive
scalar F = (6102656,) is

—LF(ry,r2,13,14) = B(r13, 734) + (713, r24) + ®(r14,723), (7
4
£=E’Caﬁ(rij)viavjﬁ+nzéi, (8)
i>7 i=1
B(ry, =)= flre)xa(r=) + f(r-)xa(rs), (9)
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where r;; =|r; —rj|. The equation (7) can be generalized for an arbitrary multi-
scale velocity field and for an arbitrary dimension d [5-7]. Although at any d
r.hs. of (7) decomposes into three parts each depending only on two separations,
only in the case of the large-scale velocity field the operator £ supports the
decomposed form: acting on an arbitrary function of the two vectors it produces
a function of the two vectors too. The corollary gives us a possibility to establisl
the following general form of the solution

F(ry,rz,r3,rq) = F(r13,r34) + F(r13,r24) + F(ry4,723). (10)

Since we are looking for a solution in the restricted region r < L, one could add
to (10) a zero mode of the operator £. However, the equation (7) stems from the
dynamical approach (see [7] for details) that keeps no room for another solution
besides of the decomposed one. The function F(ry,r_) from (10) satisfies the
following equation

—[L' + L3 F(ry,x) = B(ry, 7)), (11)
L' =2Dsin? 9[82 + (8y + cot 98¢)?], La=2x(D; +A1). (12)

In (12) we passed to the variables ¢ = In[L?/(ryr_)], y =In[r_/ry] and 9 =
arccos[(ryr_)/(ryr-)]. The physical boundary conditions imposed on F are:
F(ry,r_)—0 at ry or r_ — oo.

As was shown in [1], correlators of § do not feel diffusion if r4 > r4. Thus at
1 3> rq we can omit the diffusive term in (11) that together with the independence
of &(ry,r_) on ¥ allows us to write out a solution of (11) as a sum F=F, +F_|
where F; satisfy the equations

— 2Dsin’® 98} + 87} Fa = f(rs)xa(rs) - (13)

Here ry = (/S/|sind|exp(Fy/2) and S,d,y should be treated as independent
parameters. We conclude that, by construction, F,(S,9,y) = F_(S,9,—y). Taking
into account symmetry properties of (13) we find that Fy is invariant under
¥ — —9 and under ¥ —» ¥ —J. To solve the equation (13) one can wuse the
resolvent R of the Laplacian 85 + 82 figuring in (13):

— (85 +82)R(3, 9,y — /) =6(9 - 9')é(y — ). (14)

One should impose the zero boundary conditions on the resolvent at the boundaries
of the strip: 0 < ¥ <7 and —oo < y < 400, since in accordance with the definition
r4 — oo if 9 — 0,7 or y— *oo. The resolvent can be written explicifly:

Rl [Sinhz(y/z —y/2) +sin?(3/2+ 2/2) (15
 4x |sinh®(y/2 — v'/2) + sin?(9/2 - 9'/2) ] '
Convclution of the r.h.s. of (13) with the resolvent gives
L’p, bt 1y [(wg + 1) + wicot?
= m——————— e e - l
Fe 4Dr? sin? ¥ /0 dwf(rsw)r™"ln [(w_ +7)2 +wicot?V]’ (16)

e e e T T )
where wy =t w™t == \/ L2r~*si %9 4+ w2 Note that this formuia leads to
the wesl angular singularity of F; at 9=0

O9Fyfy . =7P;/D*(e®In(l +e7¥)—e) #0. (17
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Below we will show that the diffusion smoothes the singularity at the smallest
angles. Generally, (16) substituted into F =F; + F + (y — ~y) and further into
(10) closes the problem of finding the fourth-order correlation function F of the
passive scalar for all separations being larger rq4.

At L >» ry the integration in the formula (16) can be perfrsed han
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(F =l jF(ro) =~ P sz {inlD/ry) + 1 4+9% - 181/3}. 20

Here in the Ths we subtracted from I othe wmajer Usuudian oo,
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The characteristic angle 9o =+/kD~1L-2 cosh[y] exp(£/2) turns out to be small at
r+ > rq. Using the explicit form (23) we conclude that for 9 ~ 9y: 852 ~ 9512,
0,2 ~ 2, 3:Z ~ Z. Those estimations justify above calculations. To summarize,
at 71 > rq the diffusion is relevant only at small angles ¥ < ¥y where it influences
angular derivatives of F but it gives a negligible correction to the expression (16).

As long as one considers a correlation function at sufficiently small distances,
say F at r_ < rq, the account of diffusion is unavoidable. The major value of
the function can be found directly from the suitable expression in the convective
interval by putting there, in terms formally divergent at r — 0, ry instead of the
smallest distances (see Appendix A of [l] for the proof). Thus, using (18), we
find with the logarithmic accuracy the following fourth-order objects

at L >>113,714,723,724 > T12 > T34 > 14, T12||Tr3s

((91 - 92)4) ~ 12%?:— (lnz[’l"lz/rd] + ln[ru/rd]) y ’ (24)
(61 — 62)°63) — (61 — 62))(63) ~ ZP—ZZIH[m/rd], (25)

D
((61 — 62)%(83 — 64)) — ((81 — 62)*)((63 — 84)%) = 42—{111[7'34/73], (26)

To overcome from the correlators (25,26) to respective correlators of the dissipative
field € = k(V8)? we should differentiate them over r13,734 and replace the separations
after all by r4. One gets the following estimations

at L>»riz>rg ((e163)) = x{{(V8,)?62)) ~ P}/ D, 27)
((er€3)) = K*(((V6:)*(V63)?)) ~ P7 . (28)

Unknown multipliers behind the parametric dependencies in the formulas (27,28)
are of the order of unity. We postpone an explicit calculation of the multipliers,
that requires a direct account of diffusion. The formulas (27,28) show (in
accordance with [7]) the zero dimensionality both for the passive scalar § ~ r°
and the dissipation field € ~ 7°.

Note that in the region L, > ri;,r. > L, rik, 71, vk, Tj1 the found correlator F
does not decay. The decay occurs only at the largest scales 73,734 > L, which
are out of the scope of the present study.

The proposed solution for the fourth-order correlation function of 8 could serve
a starting point for studying passive scalar correlations in the general case of a
multi-scale (but short-correlated in time) velocity field, the problem is introduced
by Kraichnan [8]. A closure [5,9], applied recently to the model, yields an
anomalous scaling, particularly, for ((6y — 62)*) in any space dimensions, while
the consideration given in [7] shows the normal scaling for the object at d > 3.
Future attempts of a perturbative study based on the results of the present letter
could solve the collision at d=2. From another hand, an inclusion of the present
results into the scheme proposed in [10,11] could help in better understanding the
problem of the direct cascade in two-dimensional turbulence.

We thank G. Falkovich for numerous valuable discussions and R. Kraichnan
for useful comments. V. L. is grateful for the support of the Minerva Center for
Nonlinear Physics.
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