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In the hydrodynamic limit the nondissipative force F, 4, which acts on the vortex
in superconductors and Fermi superfluids, contains three different contributions of
the topological origin. These are (i) the Magnus force, (ii} the Iordanskii force,
which origin is analogous to the Aharonov-Bohm effect for the spinning cosmic
strings, and (iii) the force resulting from the spectral flow of fermion zero modes in
the vortex core, which leads to the production of the momentum of quasiparticies
when the vortex moves with respect to the normal component. The latter force
leads to the anomaly in the thermodynamics of the moving vortices, and the
possible relation of this anomaly to the Unruh effect is discussed.

1. General expression for the nondissipative forces

Recent developments in high-T, superconductivity and in the physics of super-
fluid 3He have remewed interest in the dynamics of vortices in these pair-correlated
Fermi systems [1-5]. Theoretical investigation of the vortex dynamics was started
3 decades ago (see classic papers [6—9]). In the linear regime this dynamics
was finally calculated by Kopnin and coauthors [10, 1, 11]. However the correct
interpretation of the nondissipative forces acting on the moving vortex line of the
nondissipative forces was missing.

Here we consider the hydrodyrnamical limit case wgr <« 1, where wy is the
distance between the levels of the fermions localized within the vortex core [12]
zrwi v cne lifetime of the fermions ox these levels. In this case the disapative
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force can be neglected aud we also neglect the pinning forces. Our statemeny is
ihee o oiis banit the nondissipative force Fpg, which acts on the vorui«, containe
thice dirierent contributions. F,4 is expressed in terms of 3 different combinaticns
of the reievant velocities, the velocity of the vortex une vy, ihe vaocity v, of
tie supecfluid vacoum (ov saperfluid velocity! and the velo:ity v, of ihe normal
cemponent of the lonid (the velncily of the haat bath):

Fnd = FMa';nus + Frordanskis + Fspedral Jow FI\{agnus =KX P(VL - V,) )

Flordanskii = K X ﬁn (T)(V, - vn) s Fspectral flow = K X CO(Vn - VL) . (])

Each of the three forces is of the topological origin.

(i) According to the Landau picture of the superfluid liquid its motion consists
of the motion of the superfluid vacuum (with the total mass density p and
the superfluid velocity v,) and the dynamics of the elementary excitations. The
Magnus force in Eq.(1) acts on the vortex if it moves with respect to the
superfluid vacuum. Here X is the circulation vector: for the Fermi (Bose)
superfluids k=7Nh/m (k=2xNh/m), whete N is the vortex winding number, m
is the bare mass of the fermion (boson). The Magnus force comes from the flux
of the linear momentum from the vortex to infinity. The topological origin of this
force was discussed in Refs.[3, 4].

(i) The Iordanskii force [11, 9] results from the elementary excitations outside
the vortex core: the vortex line produces for them the Aharonov-Bohm potential.
This force can be obtained as a sum of the forces acting on the individual
particles according to the equation 3¢p=(6 X vs) X p, where p is the quasiparticle
momentum and the vorticity 6xv, = Kb(r) is concentrated in a thin tube (vortex
core). The Iordanskii force is thus

—Zatp =g X /d3pl/(4w3) f[Ep +Pp-(vs —Vvp)] =KX Pr{TH Ve — vy} -
P

Here f is Fermi or Bose function depending on the type of the elementary
excitations, which is Doppler shifted due to the counterflow v, —v,; and 5,(T)
is the density of the normal component, which can be an anisotropic {iemsor.
The Iordanskii force is the only nondissipative force in Eq.(l1), which depends on
temperature 7. In Section 2 we discuss the analogy of the lordanskii effect with
the Aharonov-Bohm effect for spinning cosmic strings [13].

(iii) The third term exists only in the fermionic systems. It is the result of
the momentum exchange between the fermions localized in the vortex core and
the fermions in the heat bath. It is described by the spectiral flow of the fermion
zero modes within the vortex core and is related to the Callan-Harvey mechanism
of the anomaly cancellation applied to the fermion zero modes on vortices[2]. In
Ref.[2] the parameter C; was obtained in the zero temperature limit, where for
the spherical Fermi surface it is expressed in terms of the Fermi momentum pp:
Co = mp}/3x%. It was found recently that the spectral flow is unaffected by T,
since the temperature does not change the topology of the spectrum of fermicn
zero modes, and thus the parameter Cy equals its zeio temperature value [14].
This finding allowed to accomplish the consiruction of the general expression for
the nondissipative force Frg in Eq.(1) in the limit wor < 1, in which the spectral
flow of the momentum is not suppressed.



In Section 3 we consider the anomaly in the thermodynamics of the mixed state
(state with vortices) caused by the spectral flow contribution to the nondissipative
force, which possibly leads to the effective temperature of the moving vortex and
to the analog of the Hawking-Unruh radiation [15, 16] (Section 4).

If one adds the dissipative force to the Eq.(1) one obtains the conventional
expression for the balance of forces acting on the vortex

Pe(Vs —vL) X K+ D(vy —v) = D'(ve —vp) x£=0 . (2)

Here p, =p— p,; the parameters D and D’ were calculated by Kopnin, the factor
D in the dissipative force is small in the limit wor < 1 [1]. From the comparison
with the Eq.(l) it follows that the parameter D’ = Cp — p,. This is slightly
different from Kopnin’s result D’ =p,, which follows if one neglecis the difference
between the anomaly parameter Cy; and the mass density p. In conventional
superconductors and in superfluid 3He the difference between C, and p is very
small, of order(A/Er)?, where A is the gap in the quasiparticle spectrum and
Er the Fermi energy. However one can imagine the systems where this difference
is sizable.

2. Aharonov-Bohm effect and analog of the spinning string

To clarify the analogy between the lordanskii force and Aharonov-Bohm effect,
let us consider the simplest cases of phonons propagating in the velocity field of
the quantized vortex in the Bose superfluid *He and fermions propagating in the
velocity field of the quantized vortex in the Fermi superfluid *He-A. According to
Unruh [17] the dynamics of the phonons in the presence of the velocity field is
the same as the dynamics of photons in the gravity field. For the velocity field
of quantized vortex the phonons obey the equation of motion of the scalar wave
in the metric

i

ds® = (c? —v?(r))(dt + 7

K 2 .
._(C—Z:;)qus) - d’l"2 - d22 -

r2dg? . (3)

Here c is the sound velocity, v = ¢x/2xr is the superfluid velocity around the
vortex, and we use the cylindrical system of coordinates with the axis z along
the vortex line. The same metric takes place for the gapless Bogoliubov fermions
propagating in the field of the axisymmetric phase vortex in the A-phase of
superfluid 3He (see Eq.(4.5) in Ref.[18]). In this case the ”velocity of light” is
anisotropic and its transverse component is ¢=A/pp where A is the amplitude of
the gap. .

Far irom the vortex, where v(r) is small and can be neglected, this metric
corresponds to that of the so called rotating cosmic string. The spinning cosmic
string (see the latest references {19, 20]) is such a string which has the rotational
angular momentum. The metric in Eq.(3) corresponds to the string with the
angular momentum J =x/8rG per unit lehgth and with zero mass.

The effect peculiar for the spinning string is the gravitational Aharonov-Bohm
topological effect [13]. Though the metric outside the string is flat, there is the
time difference for the particles propagating around the spinning string in the
opposite directions. For the vortex (at large distances from the core) this time
delay approaches

2r=2x/c . (4
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This asymmetry between the particles moving on different sides of the vortex is
just the origin of the Iordanskii force acting on the vortex in the presence of the
net momentum of the quasiparticles: 2fd3p/(27r)3 pf(p).

3. Anomaly in the low temperature hydrodynamics

The parameter Cp in Eq.(1) results in the anomaly in the hydrodynamics of
rotating liquid, which becomes pronounced at low temperature, T — 0 (ie T < T).
Actually we consider the intermediate asymptote at which the system is still in the
hydrodynamical regime and the condition wo7T <« | is satisfied. This intermediate
limit of T <« 7. can be obtained for example in 3He-A [l1], where wq is extremely
small for continuous vortices, and also in superconductors where the lifetime 7 is
defined by impurities.

Let us consider the state in which the normal and superfluid components rotate
with different angular velocities:

v,=ﬁ,xr, v =, Xr . (3
For the superfluid component the uniform (in average) rotation is simulated by the
system of identical rectilinear vortices with density n = (2/x)Q,. These vortices are
rotated with the velocity vp, found from the force balance Eq.(2). The equilibrium
situation with Q, #Q, is possible because we neglect the dissipation (D =0) and
thus the friction between the normal and the superfluid rotations is absent.

The immediate result of the nonzero barameter Cpy 1s that in addition to the
radial gradient of pressure:

P(r) - P(0) = 2p,02(r) + 5pu2(r) (©)

from the hydrodynamic equations for rotating superfluids (see Rev. [21]) it also
follows the gradient of the temperature

"‘SarT = ar{vs(va - (ann + psvs))} y (7)

where S is the entropy density of the rotating liquid. This is the so called
thermorotation effect [21], and it takes place when the vortex velocity deviates
from the center-of-mass velocity (pnva + p,vs)/p (see also discussion in [22] where
the variant of this effect was observed in the rotating 3He-B and was used for the
experimental estimation of the parameters D and D’). As follows from Eqgs.(2)
and (7), in the absence of D the thermorotation effect comes solely from the
spectral flow

3

—88,T = Cod, (v,(vs, — va)) = 2Co8, (vp, — v2)) = hn%(vL ) . (8)

The rhs of Eq.(8) is temperature independent and thus is valid in a proper

T — 0 limit. This could mean that even in this limit the moving (rotating) vortices
have a nonzero entropy and a nonzero intrinsic temperature. The effect is governed
by the spectral flow of fermions from the vortex into the bulk liquid. Thus T
and S are related to the radiation of the fermions from the vortex, if the vortex
moves relatively to the heat bath, ie v #v,. This reminds the Unruh effect in
quantum field theory[l16]: the object moving with constant acceleration a radiates
the particles as a black body with temperature Tyurun = ha/2wc. This results from
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the apparent change of the vacuum state, as measured by an accelerating particle
detector. The main difference is that in superfluids the vacuum state can change
even if the object moves with constani velocity: this leads to the radiation of
particies if, say, the critical velocity 1s exceeded.

If one considers this analogy senousiy, the moving vortex should have an
eflective temperature, which defines tiie raciation of the fermions by the moving
wortex. This temperature corresponds to the average energy of the fermion zerc
mode in the vortex as measured in the frame of the heat bath:

: — 2 ~/2 2
Teﬁ'm!(VL—VTL;"p!g;IvL—vﬂlpF/- d¢COS¢=;|VL—-Vn|PF . (9)
4]

4. Tunneling of particles and effective temperature

Let us consider the regime when wo7 is large, and the discrete nature of the
generalized angular momentum @, which describes the fermions in the vortex core,
becomes important. In this case the spectral flow is suppressed and occurs only
due to the turnneling of the particles between the discrete levels, which is caused
by the vortex motion. The exponential suppression of the forces acting on the
vortex was recently discussed in [5], which corresponds to the effective temperature
in Eq.(9), however without the factor 2/x. We show now that just the factor
2/7 was missing in [5] and the tunneling rate between the neighbouring levels is
defined by exp —(wo/Text)-

The Hamiltonian, which describes the problem at low T is related only to the
low-energy anomalous branch of spectrum, ie to the fermion zero mode:

H=Quwo+ wot(vy xp)-Z . (10)

Here ( is the operator of the generalized angular momentum of rotations about
the vortex axis z [l2] and p is the operator of the linear momentum of the
particle. For simplicity we consider the 2-dimensional case, ie wp does not depend
on p,. The sccond teinm coines from the change of the angular momentum if it is
observed in the heat bath frame, Q — Q +r(t) x p, and r(t) =(vy — vp)t (further
we choose v, =0). The operators Q, and transverse linear momentum p=p, do
not commute:

[Q.p]=iZxp . S
In terms of the matrix elements between the states with different Q the Hamiltonian
1s:

Heo = Qéggrwo +w0t(2 x vp) < Q|p|QI >,
1 . a " a
< QIplQ" >= 5pr((§ + i8)éq,q'+1 + (§ — i8)éq,0'-1) (12)

where we used the condition p?=pi.

If the vortex velocity vz is small compared to wo/pr, the semiclassical approach
becomes valid. in this case the level flow is determined by the exponentially small
transition probabilily between two neighbouring levels. Let us find this exponent.
The Hamiitonian for the two-level system, Q@ and Q@+ 1, is

o 1 1 1 vLipr
}1—(Q+—2')u0+§wo(thpF 1 . (13)
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The square of the energy counted from the position in the middle between these
two states is 1

(B (@+ 3)wo)? = gw3(1 + (vstp})) (14

The trajectory ¢ = it on the imaginary time axis, which connects iwo states,
gives the following transition probability between the states n the 2xponential
approximation:

no [TA :
woc exp—2ImS , ImS= 2/ dr—wo\/z—- —7-7 , g e (15)
o 2 i v pr
This gives
wocexp—%ngp (16)

Thus the tunneling rate is equivalent to the thermal distribution of quasiparticles on
the levels of the anomalous branch of the spectrum with the eflective temperature
in Eq.(9).

5. Discussion

We found three topologically different contributions to the sowllssipative force
acting on the moving vortex. The third contribution, which comes from the spectral
flow, is anomalous: it reflects the Callan-Harvey effect of anomaiy -anceliziion
and leads to the low temperature anomaly in the vortex thermodynamics. This
anomaly can be described by some effective temperaiure of the vortex cores in
Eq.(9), which defines the radiation of the fernions from the moving vertex. If
the Eq.(9) is taken seriously, then from Eq.(8) it follows that there is an entropy
density of the system of vortices related to the speciial flow

p: !
S(r) = —msgfﬂ,r = —3??7‘»*‘ : (17)

This corresponds to the entropy per one vortex épfﬂ U, where L is the length of
the vortex, or ép}A, where A is the area of the surface hetwoen tle vortex line
and the axis of rotation.

The effect is possibly somewhat similar to the tempiratuze and entropy of the
black holes. For the black hole[l15] the entropy is related to ithe process of the
crossing the surface of the hole’s horizon and equlas the avex /- -7 th: ‘orizon
multiplied by some fundamental constant (for the black hcle this i= the souare of
Planck momentum) S = (1/4)Ap%,.. .. [15]. In cur case tue Pl ;
substituted by the Fermi momentum, and also the fazior !/6 s «
black hole value 1/4, which can reflect the difference ©: 2 o

Possible interpretaion of the area law for the vorter - T ‘
the multivaluedness of the condensate phase arouad the vortex whizh acceriing to
Eq.(3) produces the Aharonov-Bohm jump in the phe<: of *he
function on some surface bounded by the vortex 100;;.
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A formation of a dynamic grating of ring domains as a result of a functioning
of the local domain source in an alternating magnetic field has been observed in the
ferrite-garnet film. Dynamic characteristics of the domain source and quantitative
parameters of the ring domains grating have been determined.

It is known ([1] that in the ferrite-garnet (FG) films with perpendicular
anisotropy a self-organization of a system of magnetic domains takes place un-
der the influence of an external magnetic field. Stable regular dynamic domain
structures (DDS) of different configuration are formed in a region of an anger
state (AS). At the same time a self-generation of the periodical processes of
an appearance/disappearance of the DDS with a certain geometry takes place.
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