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We suggest an effective field theory for disorderd conductors, which describes
quantum kinetics of ballistically propagating electrons. This theory contains non-
linear o-model [I] as its long wave limit.

1. The non-linear o-model is proven to be a useful tool in the description of
various properties of disordered conductors. Any property, such as conductivity,
averaged over different realizations of the random potential can be presented in
this model as a statistical average with the free energy

F= 7—rs—’i/drstr[D(VQ)z +2iwAQ], Z-= /DQe_F. (1
Q3=1

The functional integral is taken over the 8x8 super-matrix Q(r) which is subjected
to the constraint Q?=1. Here and below we use the super-matrix version [1] of
the nonlinear o model.

This discription is valid under the following two conditions:

i) the Fermi wave length Ap =h/pr is much smaller than the mean free path
l, ie. prl/h > 1;

il) the typical wave vector g of the super-matrix fluctuations is smaller than
1/1, ie. gl 1.

These conditions mean that (i) the semi-classical description is applicable to
the electrons with the Fermi energy, and (ii) their motion is described by the
diffusion equation. There are physical situations when the condition (i) is fulfilled,
while the condition (ii) is not and electrons propagate ballistically. This happens,
for example in a metallic grain with a diffusive boundary scattering if the bulk
mean free path ! is much larger than the grain size L, ie. > L.

In this letter we present a generalized version of the model (1) whose validity is
no longer restricted by condition (ii). The generalized partition function correctly
accounts for the fluctuations with wave vectors g ~ 1/l and therefore can be used
for the description of systems with ballistic electron motion.

We begin with a general expression for the free energy which is obtained after
averaging over the random potential, the Hubbard-Stratonovich decomposition of
the quartic form and integration over the electron degrees of freedom (see [1] for
details and notations)

F=-gstlal-ik]+ 3 [srQ*w)r, 2= [DQe, (2
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K=FE-Ho+5h+5-Q Ho= 5 (3)
This expression appears at a preliminary stage in the derivation of Eq. (1) and
the supermatrix Q is not yet restricted by the constraint Q% =1.

Equation (2), in principle, could have served as a required generalisation of the
free energy (1). However, it is too detailed being valid for the super-matrices Q
fluctuating with arbitrary wave vectors q. It will be simplified in order to describe
the small g fluctuations only (¢ <« pr/h). The first step in the simplification is
the same as in the derivation of the quantum kinetic equation in the Keldysh
approach (see, for example, [2]).

2. The Green function G(r,r'|Q) of the operator K obeys the equations

|2~ o) + 54+ 00| 6eriQ) = we-r)
[E - #o(r)] G(r,¥|Q) + G(r,¥'|Q) [‘—;—A + %Q(r’)] = is(r—1r'). (5)

Subtracting Eq. (5) from Eq. (4) and going to the Wigner representation

6,1 = [(dp) G5, p) P (6)

we can find after the integration over the modulus of the momentum p an equation
for

1 -
gn(r)=— /dEG(r,n—g—), n’=1 (7
s vF
This equation can be presented in the form
dgn(r) . Q
2oen 22200 - [ion - 2,0, ®)

which resembles the quantum kinetic equation in the FEilenberger form [3]. The
matrix gn(r) in this equation has the meaning of distribution function at a
coordinate r and momentum p=n-pp.

Being linear, Eq. (8) does not define gn uniquely and must be supplied with
the normalisation condition [2]

gi=1; Trgn =0. 9
The matrix Q{r) is invariant with respect to the charge conjugation
Q=0Q7cT =q, (10)

where € is a certain matrix (see [1]), CTC =1. Taking the charge conjugate of
Eq. (4) and using Eq. (10), we see that G(r,r') obeys Eq. (5). Therefore

G(r,r')=G(r',r), G(r,p)=G(r,~p), In(r)=g-n(r). (11)

Thus, Eq. (8) with the normalisation condition (9) and the symmetries (11) is a
long wave limit of Egs. (4,5). Our goal is to perform analogous simplification of
the free energy (2).
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3. An intermediate step is finding a functional ®, which reaches its extrema
for solutions of Eq. (8). This equation resembles the equation of motion of a
magnetic moment M in external magnetic field B:

8
¥—=[MXB], M?Z=1. (12)
The action for this problem has the form (see, for instance, [4]) ,
, ot o [OM oN
= tl 1 14 N —_—
A /odBM(t)+/;dt/0duM[atxau], (13)
where the function M(t,u) is introduced as
M(t,0) =Mo;  M(t, 1) = M(2). (14)

The_second term in Eq. (13) does not depend upon the choice of Mo and values
of M(t,u) for 0 < u < 1, provided M(0) = M(t).
Following this analogy we present @ in the form

=/drstr [(éQ(r) - iwA)(g(r))} + E;W{yn}' (15)
(9(r)) = / d—?fgn(r), (16)
1 - -
W{gn}=/dr/§£r2—./; dustr gn(r, u) [%? nggg—{l, (17)
gn(r,0)=A;  gn(r,1) =gn(r). (18)

The functional derivative §®/6gn must be taken with constraint (9) which guar-
anties that gnégn + 8gngn = 0 and an arbitrary variation &3n has the form
égn =[gn,an). As a result

an 1
6% = /dr/ 4: str ([;Q(r) — wwA, gn] an) + %SW, (19)

SW = 4 / dr / A (nﬂ"ﬂan) (20)

Thus, Eq. (15) gives the required functional.
4. Now we are prepared to show that in the limit [ 3> Ap the partition
function (2) reduces to the form

where

zZ= / Dgn(r)e ¥, (21)

=1
F= [ [ arsn {iwnto(e)) - 50 | - 5 - Wiom)], 22)
W{gn} = / dr / df;’ / dustr g (r, v) [a”“ naag:,} (23)
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Indeed, the following indentity is valid

1 oa v .
Z1{Q} = exp [-i strln(—zK)] = /’Dgn(r) exp [—4-<I>] = Z,{Q}. (24)
g;lzl
The free enerzy rv®/4 in the partition function Z, has a deep minimum for
gn(r) equal to gg)){rlQ) which is the solution of Eq. (8). Witk the saddle point

precision

6Z2{Q} il f Ll = fg,',,(”) -] TS
-r—S_Q(r) ;‘/ (g(l‘)) €xp [- 4r ¢] un 47 \gil > IJZ{Q}' R ]
On the other lhand
‘SZI{Q} Zl{Q} =, O TS
-—g‘j(;‘)‘“ “’—“T‘G(Txr) Ao Wn e e

Thus, the functionals Z;:7/Q} v~bey indentizal equations. Since Zj{A}= Z{i; =1
the indentity (2¢) is proven.

Substituting Eq. /24) into Egq. (2) and iaking the Gaussian integral over 0,
we arrive at the final expressicn (21-23)

S. For small gradients the Tee encrgy (22) rolwces to the standard o-model
(1), To show this we :xpand the matrix gn inis the o cver sperical functions
YL,M{n)

o0 L
-~ “~
gn(l‘)"'Z‘_J L grar{r) - Yo .. {0}
L=0M=-L
and note that only zero and first harmonics coniritmte to the functional integral
{21):
Q1*
gn=Q(r)+J(r) - n— —.

Q

(2i)
The constraint g% =1 now reads
Q=1 QI +JQ=0. (28}

Substituting the Eq. (27} into Eqs. (21-23) and using conditions {28) we obtain
the partition function in the form

z =/DQ/DJe"F(Q'J), F(Q,3)= -’";—”/drsn{imq - Ji - %F(VQ)QJ}. (29)

After the Gaussian integration over J in Eq. (29) we arrive, finally, at Eq.(1).
6. Equations (21-23) can be generalised in order io describe the ballistic

motion in the presence of external fields. In a generzl case the electron is

described by the classical hamiltonian H(p;,z;) and the kinetic equation {8} has

the form (see (Z]}:

{#(z,p),9(=,p)} = [(%A - %) 19(p, ui {30)

where {H,g} denotes the Poisson brackets
OH 3¢9 OH g

H = -y .
{ (z,p),g(z,p)} dp; Oz, dz; dp;
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Equation (30) is still the first order differential equation and the generalisation of
expression (22) for the free energy has the form

F= % / d:c;dp;6(E-—H(p,:c))str{iwAg— "2@ ; duj(z, p, u) [ oo {H, g}]}
(31)

where

(ool =, [ dpl6(E - H(F, Do, )

7. As an application of Eq. (31), let us consider the derivation of the Pruisken
action [5] for a two-dimensional electron gas in a perpendicular magnetic field B.
To simplify the treatment, we consider only the case of classically weak field

eB
Qr<l; Q. =—, (32)
me
when there is no Landau quantisation and the density of states v is a constant.
Nevertheless, we take into account that in the presence of magnetic field the
symmetry of g-matrix is reduced, and g belongs to the unitary ensemble. The
Poisson brackets in magnetic field are

dgn
{H,g}=‘an

o+ [ x%nﬂ] (33)

and the free energy (31) has the following form

2 1 1 ~ ~ -
F= T—:-/drst: {iwA(g) - (—!277);- A du <§(:c,p, u) [g—z,vpngg + 0, [n X g%“>} .
(34)
In the diffusive limit the expansion (27) can be used, which leads to the following
expression for the free energy as a functional of Q and J;

Z=/DQ/'DJe"F(Q’J),

2
F(Q,J)= ’;—”/drstr{imq + %; - ”—2’i(VQ)QJ - 92—°Q (7 x I} (35)

The last term in the free energy (35) does not vanish because the components of
the matrix J do not commute. Under the conditions (32), the Gaussian integration
over J may be performed, with the vector product in Eq. (35) as a perturbation,
to yeild, finally, the free energy in the form

F= ] / drstr (022(VQ)? + 204,Q[V.Q, V,Q]), (36)

where
Ozs =€%vD, Ozy = OzzldcT. (37)

8. There is a topological question, related to the W-term in the free ener-
gy (22): is it always possible to construct the functional W{g}, whose variation
is given by Eq. (20)? The prescription (17) gives the W-term for the functions
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g(r), which are close to go(r) = A. The question is whether such a functional can
be defined globaly.

The answer depends upon the topology of the constant energy surface H(r,p)=
=F in the phase space {z;,p;}. For the cases of billiards and space dimension
d > 1 the functional W does exist.

For a one-dimensional system W can only be found as a multivalued functional,
just as the action (13). This causes no trouble, provided whrvr is an integer.
This integer exactly equal to the wave-guide channel number in the wire.

An accurate mathematical formulation and the proof of these statesments wili
be presented elsewhere.

9. So far, we have considered only the systems with finite amount of disorder.
One can see, however, that the expression (31) remains meaningful even as
7 — oco. Therefore, we expect that the free energy Fo, = F(7 — oo0) describes a
clean system with the Hamiltonian H. As a consequence, the partition function
Zo = [ Dgexp(—Fx) with the proper source terms gives the level statistics.

In the low-frequency limt (w — 0} only the zero-mod: ¢°(r,p) such that
{H,g°} =0 contributes to Z,,. There are two possibilities:

i) the hamiltonian system under cosiderativn is iucegrablc and there exists a
set of integrals of motion {I;,...IL,}, {H,Ii}=0. Uuder this condition the
energy levels are characterised by the eigenvalues of {I,...I,} and do mnoi
repel each other. Therefore the level statistics is Polssonian;

i) the classical dynamics is chaotic and the only integral of motion is energy.
In this case the zero-mode is constant in the phase space and Z, is reduced
to the form

Z. = [Dg exp (~ ‘{?f stt(Ag)) (38)

which leads to the Wigner—Dyson (WD) level statistics [1].

In the chaotic case deviations form the WD statistics occur for the frequencies
larger than the inverse time of flight through the system. These deviations are
described by the small fluctations of g about several stationary points A;, similar
to what has been recently shown by Andreev and Altshuler (AA) for diffusive
systems [7]. In complete agreement with a general AA-conjecture, the deviation
from the WD statistics is described by the determinat of some operator. It follows
from our consideration that this is the Liovillean operator

10. In conclusion, we would like to emphasize that the theory presented here
contains the diffusive o-model as a limiting case and supplies it with the physically
motivated regularisation of the infinities at short distances.

We are greatful to B.D.Simons for his question, which inspired us to derive

Eq. (36).

1. K.B.Efetov, Adv. Phys. 53, 250 (1984).

73



[l

=~

74

A.Schmid, In: Nonequilibrium Superconductivity, Phonons and Kapitza Boundaries, (1981), Ed
K.E.Gray, Plenuwm Prese, NY, p.d25

G.Eilenberger, Z. Phys. 204, /9% /1958;.

E.Fradkin, Field Theories of Condensed Matler Systems, Addison-Wesley, 1991.

A M .M Pruisken, Nucl. Prys. B43¢, 277 (1984).

B.).Altshuler and bs.J.Shkiovskii, Zi. Hxp. Theor. Phys. 31, 220 (i986), [Soviet Phys. JETP;
24, 127 (1986)].

A Andreev and B.L.Alizhuler, Phys Rev. Lett. (1995}, submitte





