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We calculate the contribution to the parameter D’ of the reactive force
acting on a moving vortex, which arises from the spectral flow of localized gapless
fermions. Our consideration is valid in the regime wor € 1 and also limited to the
adiabatic case vpkpr € | since we use the stationary density matrix. We assume
discrete equidistant fermion spectra and show that the answer is the same as that
obtained by Volovik in the continuous limit, namely, D:pec.ﬂo' -mki, /6x% per each
anomalous branch. The result applies for the temperatures T & T.. A possible
extension to the temperatures close to T, is suggested.

Introduction.  Low-lying fermion modes localized inside cores of quantized
vortices essentially affect low temperature thermodynamic and kinetic properties
of superconductors and Fermi-superfluids [1]. Of especial interest are anomalous
fermion branches which intersect the zero energy level as functions of approximate
continuous quantum numbers, and pass very close to zero as functions of actual
discrete quantum numbers. The characteristic energy scale of the lowest levels and
the interlevel spacings on anomalous branches wo = AZ%/Ep (2] is much smaller than
the characteristic energy A =~ T, for bulk fermions, therefore, effects of localized
anomalous excitations become crucial at temperatures T <« T.. The hydrodynamic
regime is determined by the inequality wor < 1, where 7 is the effective time of
quasiparticle relaxation. This will be our first restriction.

An important set of kinetic coefficients is related to the vortex motion. Consider
a straight vortex line directed along the z axis, which moves uniformly as a whole
with the velocity vy L 2. Then there is no net force acting on the vortex:

ps(Vvs = VL) XK+ D(vp —vy) = D'(vp —vp) x §=0 @)

(see, e.g., [3]). Here £=:iNwh/mjz is the vector of circulation; v,, v, are the
superfluid and normal velocities. Parameters D, D’ were calculated for conventional
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superconductors [4]; the same approach was also applied for superfluid *He [5-7].
In [8] a new treatment of the reactive force coefficient D’ was proposed, based
on the notion of the spectral flow along anomalous branches of localized fermions.
The reactive force is given by the rate of the momentum creation due to the
spectral flow from vacuum. In [8] the actual discrete fermiomic spectrum was
replaced by a continuous one, which is justified if the level width exceeds the
interlevel spacing. The following answer for the contribution to the coefficient D’
from one anomalous branch was obtained:
k3
;pec.ﬂow = m# (2)

We will show that in a simple model, in which only one anomalous branch with
linear spectrum is taken into account, the same result holds in the adiabatic
approximation for all temperatutes T < T,. We will also briefly discuss a possible
extension to the realistic nonlinear spectrum.

For the sake of simplicity we shall restrict ourselves to axisymmetric vortices. In
this case the relevant quantum numbers of fermionic excitations are the projection
of the momentum om the z-axis, k,, and the angular momentum projection, Q.
Quasiclassical approximation, valid for Q 3> 1, gives an equidistant spectrum, which
is linear in Q for each value of k, (2, 5]

E(Q, k) = Qu(k.). (3)

The interlevel spacing w(k,) ~ A%/Ep exhibits slow dependence on k, [2], which
will be irrelevant for us. The angular quantum number Q =n+ v, n € Z can
assume either integer (v =0) or half-integer (v =1/2) values [9].

Simple model for the momentum flow. Fermionic excitations are eigenmodes of
the Bogolubov Hamiltonian. In order to build the model we replace it by a much
simpler Hamiltonian

ﬁo = Qw(k;), (4)

where Q is the angular momentum operator of a fermion. Since we are going to
study processes of creation from vacuum, the choice of the true vacuum reference
frame becomes important. We postulate that the true frame is given by the
normal component, i.e. moves with the velocity v,. We also suppose that the
fermions born from the vacuum immediately get thermalized, and, therefore, the
whole fermion system can be ascribed some temperature T = 1/3. The latter
assumption is always justified in the regime w(k,)7 < 1.

Without any loss of generality we can put v, =0. According to the general
rule, the angular momentum of a moving fermion acquires the term r x P, where
P is the fermion’s momentum. Taking into account that r=rp+tvy and omitting
the additive constant we get the following Hamiltonian in the laboratory frame

(10):
= (Q +#( vz x P) -z) w(k.). (5)

The operator @ is diagonal in the Q-representation, while nonzero matrix elements
of the momentum P correspond to transitions @ — Q + 1:

- 1 . S,
Poo' = 3¢ (9 + i2)8q,q'+1 + (§ — i£)éq.q'-1), (6)
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where g is the perpendicular momentum, g% = k% — k2. We choose the axis z along
the vortex velocity vy and rewrite the operators of momentum projections and
the Hamiltonian (5) in the second quantized form through fermionic operators a},
a, (n€2):

o 1

P, = 34 Z(a:_,_la,. - atant1), (7

. 1

Py, = iq Z(a’:-}-la'ﬂ +arTan+l)’ (8)
H(t) = Z enatan + A(t) Z(a,‘t‘+1a,. +atani1), 9)

where &, = (n + v)w(k;), A(t) =(1/2)w(k;)qurt.
We will use the equilibrium density matrix
p(t) = exp(—BH (1)), (10)

containing time only as a parameter entering A(¢) (adiabatic regime). This is
justified if dA\/dt € w(k,)/r, which gives us the second restriction vpkpr < 1.
The rate of momentum creation is obtained as follows:

8P =8, (Txlp(t)P)/ T a(t)) (11)

The expected value of the momentum can be expressed in terms of Matsubara
Green functions,

Gam(m1 = 72) = —(Trap! (1)anl (m2)), (12)
in the following way:
P(t) = (iq/20) Z(Gn,n+1(“’k) = Gri1n(wr)), (13)
n,k
Py(t) = (2/28)) (Gnnsr(ws) + Guirn(wr))- (14)
n,k

Here wi =(x/B)(2k + 1) are fermionic Matsubara frequencies.

One can easily see that Gg,i1(w) = Gny1n(w), which entails P (t) = 0 as
it should be because the reactive force is applied in the perpendicular to vp
direction. It can be shown (see below) that only the first term of the perturbation
series in A gives a nonzero contribution to Py(t):

2
_q9v
Py(t) = ( T ) 2 t. (15)
The total reactive force from one anomalous branch is given by
1 [fFr _ vk
F, 3 a,P (t) 2 r (16)

leading to (2). (The factor 1/2 removes the double counting of particle and whole
momenta.) Thus, the equation (2) appears to be temperature independent in our
simple model with one linear chain of equidistant levels.
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A few technical details. The unperturbed Green function in the frequency
representation reads:

GO (w) = bnpm - 1 . (17)

W — €y

We denote G, = 1/(iw — €,). The diagrammatic technique for the Hamiltonian
(9) is as follows. In order to get the correction of the order Alm=nlt+2s (5 > 0)
to the Green function Gp,m(w) one has to sum over all ('"'_’:H'z’) paths II, of
the lengths |m — n|+ 2s that join n and m. The contribution of each path is
proportional to the product of |m — n|+ 2s + 1 zero Green functions Gy over all
sites k visited by the path, including end points, multiplicities II,(k) being taken

into account:
GS::Z.(“’) = )\lm-ni+2s Z Hgi'l.(k)_ (18)

nl k
oM, ={n,m)

It follows that Gpm(w) = Gmn(w). All multiple poles in the right hand side of
(18) cancel out, leading to the result:

m-n+2s

G1(:12t(w) i ( )gn-agn—a+1 .o gm-f—u n<m. (19)

s
The equation (19) can be checked by a direct substitution into the Dyson
equation, .
Gnm =6nmGn + Agn(G‘n—l,m + Gn+1,m)v (20)
which is satisfied in all orders.
According to (14) the lowest order contribution to ihe momentum creaiion is
proportional to
> Gana (@) =2 Y Galwir)Gnsa(wh)- (21)
n.k n,k

Successively performing summations over frequencies and over sites we get

1
A - - =-A kz), 22
DD o ey M )
which leads to (15). One can easily see that a more general relation is valid:
A Z Gntry (WE)Gnsrs (i) = —AB/w(k.) (23)
n,k

for all ry #Fr,.
Higher corrections are expressed through sums of products of more than two
Green functions. The relation

Gp —Yq
w(k:)(p~q)’
enables us to rewrite a product of N zero Green functions as a linear combination
of products of (N — 1) Green functions. (The absence of multiple poles in (19) is

essential here.) Applying the decomposition rule (24} several times we can express
all higher order corrections linearly in products of triplets of sero Green funciions:

Z Gntr,(WE)Gngr, (WE)Gniry(we), T1F 72 ¥ra. (25)

n,k

GpGg = (24)
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We only have to demonstrate that (25) vanishes. In order to do this it is sufficient
to decompose the product of any two of the three Green functions with the aid
of (24) and then make use of (23).

We have shown that the adiabatic value of the spectral flow contribution to the
reactive force coefficient D’ .« the same for a discrete equidistant spectrum and
for a continuous spectrum in the regime wer < 1. For a singly quantized vortex
possessing two anomalous branches this contribution equals Dy,. 4., = mk3, /3x2.
This leads to a reactive force which is linear in the velocity of the vortex. (The
calculation of mon-linear corrections requires the exact nom-adiabatic treatment of
the density matrix.) Moreover, we have found that in the simple model with the
linear spectrum the spectral flow contribution does not depend upon T'. Another
contribution to the coefficient I’ originates from the Iordanskii force [11, 10]:

fordanskii = —Pn- The net value of the coefficient D' = ;pec.ﬂow + Diordanskii
P~ pn =p, is close to that obtained in [3, 7).

Actually, our discussion was limited to the case of small temperatures T K T,
because of two main reasons:

1) we used the linear form (3) of the anomalous branch spectrum, which is
not applicable at temperatures close to T, (in fact, the spectrum tends to +A for
Q — o0);

2) we did not take into account the tramsitions that couple the anomalous
branch with the other branches and extended states.

It can be shown that only the asymptotic values of the spectrum at @ — oo
enter the expression for the contribution of the anomalous branch to D’:

D{oc.spec.ﬂow(T) = D:pec.ﬂow : tanh(A/2T)' (26)

In order to get an agreement with [7], we should suppose that the tempera;tute
dependent factor in (26) is canceled by that arising from the transitions involving
the other branches and extended states:

D::xt.lpec.ﬂow(T) = D:pec.ﬂow : (1 - tanh(A/2T))’ (27)

but we do not possess any direct demonstration of (27).
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