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In the framework of the three-dimensional nonlinear Schrédinger equation
{NLSE) the instability of two-dimensional solitons and vortices is demonstrated.
The instability can be considered as the analog of the Kadomtsev-Petviashvili
instability {I] of one-dimensional acoustic solitons in media with positive dispersion.
For large distance between the vortices this instability transforms into the Crow
instability [6] of two vortex filaments with opposite circulations.

1. The Kadomtsev~Petviashvili (KP) instability [1] of one-dimeniional acoustic
solitons was the first in a set of the analogous instabilities of solitons 1in hy-
drodynamics and nonlinear optics (see, for instance, {2-4]). The cause of this
instability is quite general (see {5]). An acoustic solitor in a medium with positive
dispersicn represents itself as a propagating density well. The amplitude /the well
depth) decreases with increasing velocity. Therefore, by the transverse mecdulation
of the soliton the regions with smaller amplitude (shallow wells) will overtake
those with higher amplitude (deep density wells). This results in an instability
of the self-focusing type. In this Letter we demonstrate that the instability of
two antiparallel vortex filaments predicted at first by Crow [6] for ideal fluids and
the KP instability of acoustic solitons can be considered as two different limits of
the same instability for the whole family of two-dimensioral solitons and vortices,
described by the nonlinear Schrédinger equation (NLSE) with repulsion:
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i¢t+§V2¢+(l — |[#|*)% =0. (1)

As well known, this equation has, at least, two important applications. The
first one relates to nonlinear optics and here Eq. (1) describes the propagation
of electromagnetic waves in defocusing media when the refractive index has a
negative nonlinear addition proportional to the light intensity {~ !u[*). In this
case the nonlinear term amplifies the linear effects, diffracticn and -ispersion, by
broadening the optical pulse in transverse and longitudinal (relative to the pulse

13

propagaticn) directions. Thus, meaningful nonlinear dynamics is onaly poss
pulses sufficiently lorg m time and wide in transverse lirecticn when, for :nsiance,
dark solitons are observed. Therefore we will further assume that 3 tends to
the constant value, say, to 1, as |r| — oo. In such s formulatien Eq. (1) is
also used as a model for the description of the condensate motion in a weakly
imperfect Bose gas, with 9 being the condensate wave fuasnciisn. For the Bose gas
this equation was first derived by Gross (7] and Pitacvsky (8], and therefore it is
sometimes called the Gross—Pitaevsky equation.

2. Depending on the spatial dimensions of the problem, the NLSE (1) gives
rise to different nonlinear behaviors. As well known, in the one-dimensional case
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the equation can be integrated by the inverse scattering transform [9]. One of
the main results of this theory is a stability proof of one-dimensional solitons. In
optics such objects are called grey solitons and respectively dark solitons for the
ones at rest.

In two and three dimensions soliton solutions cannot be found explicitly in
all range of parameters (except for some limited cases), but only numerically.
Multi-dimensional solitons have been studied in detail in several papers, mainly in
the context of the dynamics of the Bose condensate. Among these we would like
to distinguish a series of papers by Roberts and co-authors [10,11] and the paper
of Iordanskii and Smirnov [12].

The shape of the soliton solution in the form % = ¢o(z — vt,r.) (here we
consider only axisymmetric solutions) is determined by integration of the following
equation

. 0o 1

— gy TV %ot (1= )Y =0. (2)
Here v is the velocity of the soliton and ¢ — 1 for all directions as r — oo. It is
easy to see that this solution (as well all other stationary ones) can be obtained

from the following variational problem,
6(H —vP;)=0, 3

where

#= 5 (199 + (WP - 17ler, 4)

P=/nUdr (%)

are the Hamiltonian and the momentum 1), respectively. Here we introduce the
density fluctuation n=N — 1 and the velocity U= V¢, connected with the wave
function as follows ¥ = /Ne'®.

Equation (3) says that the soliton solution represents the stationary point of
the Hamiltonian for fixed momentum. The Lagrange multiplier v in (3) coincides
with the soliton velocity in (2). Hence, in particular, it follows that on the soliton
family the velocity v can be defined as

e

v=3p (6)
where ¢ is the soliton energy and P = P, is the z-component of its momentum.
The possible range of soliton velocities is defined from the form of the spectrum
of small oscillations on the background of consiant density, N =1, for (1) (the
Bogolyubov spectrum), w = k(1 + k?/4)1/2. It has to lie in the interval between
0 and the minimal phase velocity vpn = w/k, coinciding with the sound velocity
C, = 1. The soliton velocity cannot exceed the minimal phase velocity because
then the Cherenkov-like radiation will become possible and, as a result, such
a localized structure cannot be stationary, it will lose its energy and finally
disappear. Therefore, close to the threshold for the Cherenkov radiation, but for

)1t is possible to show (see [11]) that the usual expression for the momentum P = i— f (¥*Vy—
—4*V4)dr diverges logarithmically on the 2D soliton at the infinity. The simplest renormalization
leads to the expression (5).
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.ne amplitude of the soliton will be small and vanish for v = C,. Near
< Geéshold the nonlinearity, being weak on the soliton solution, is compensated
}ythe (positive) dispersion, which also has to be weak for this reason. In this
celocity region in the 2D case the soliton solutions are close to the 2D acoustic
solitons of the KPI equation. The regular procedure of such a reduction from the
NLSE (1) to the KP equation consists in the introduction of both slow time and
slow coordinates, t' =¢€3t, ¢’ =¢(z — C,t), ¥ =€y, z’ =€’z and the representation
of n in the form of series in powers of the small parameter ¢ (for stationary
solitary waves €=+/1 — v). The KP equation appears in third order (~ €3),

7] 1 3 1

E (ﬂg - '8—711-11- + ~2—nn,) = ——iVin. (7)
The momentum P in this case can be expressed through the density fluctuation
n:

P =/n2dr >0, (8)

and the energy ¢ coincides to the leading order with P.

With the help of the inverse scattering transform the solution of the KP-
equation (7) was found explicitly in the form of a two-dimensional soliton, it
is the so-called lump {13]. The momentum P on the lump is proportional to
V1 —1v so that 8P/8v < 0. For the NLSE (1) the existence of soliton solution,
semilar to the lump, was later confirmed numerically in [11]. In that work also
the whole family of two-dimensional solitons was found numerically. According to
these results the density well at the center of the soliton becomes deeper and
deeper when the velocity decreases. There exists such a velocity, v., for which
the density well reaches the "bottom™, i.e. N becomes equal to zero. For smaller
v this zero bifurcates, it splits into two separate zeros in the direction transverse
to the direction of the soliton propagation. These zeros correspond to two vortices
with opposite circulations and looks like a vortex dipole. The reduction of the
soliton velocity results in a growth of the distance (I ~ 1/v) between the two
vortices so that in the small velocity limit the dipole vortex pair is described,
with a good accuracy, by the Euler equation for incompressible fluids. The density
fluctuations n for scales ~ ! are unessential with respect to the phase variations.
The density vanishes at the centers of each vortex and saturates sufficiently rapidly
at the distances of the core radius a ~ 1. Thus, the flow outside the core regions
can be considered incompressible with a good accuracy (see, e.g. [14])

divU = v2$ =0, )
The solution of this equation, as v — 0, can be written in the form
$(w) = arg(w — il/2) + arg(w + il/2)

where w =z — vt +4y. The main contribution to the energy in this limit is
connected with this incompressible flow,

€ = 2xlog(1/v). (10)
Using relation (6) one can write
Oe dv
E)- —8—1—5 =v. (1 1)
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Introducing (10) we obtain
8P 2x

';9—1-’-=——~v—;<0. (1«

Thus, in both limits of small and large velocities the derivative 8P/8v is negative.
If one assumes that the function P(v) is monotonous then it is readily seen that
the derivative 8P/8v will be negative in the whole range of velocities v. Numerical
integration of equation (2) confirms this assumption completely [11]. Thus, in one
limit we have the KP solitons and, respectively, the KP equation, and in the
other limit for small velocities we get two parallel vortex filaments with opposite
circulations, which are similar to the vortex solutions of the 2D Euler equation.

3. The main purpose of the present paper is to investigate the stability
of the whole family of two-dimensional soliton solutions. We assume that these
solutions, representing stationary points of the Hamiltonian H for fixed momentum
P, should be stable in the 2D case, because both the KP and the Euler limits
indicate their stability. In the first limit, the KP soliton realizes the minimum
of the Hamilionian for fixed P and therefore it is stable in accordance with the
Lyapunov theorem [2]. For the Euler equation the fact of stability of two point
vortex distribution is well known (see, for instance [15]). We show that such
solitons are unstable with respect to three-dimensional perturbations.

Let us seek for the solution of equation (1) in the form,

Y(r,t) =vo(z', y) + 69¥(z’, v, ‘z,t) (13)

where the soliton solution o(z’,y) obeys equation (2), é¥(z’,y,2,t) is a small
perturbation, and z’ =z — vt. Let the perturbation depend on ¢ and z in the

following way,
61/) - Uy . .
( Sy ) ( s )exp(—uut + ikz),

then after linearization of equation (1) on the background of 1o, we arrive at the
following spectral problem:

woal — %k2u+Lu=0. (14)

Here

o 8 1., 2)4o)® - 1 3 )
L —ivos5— + 2(3, + 8y) ( e 2pol? - 1

is a Hermitian operator, and o3 is the Pauli matrix.

It is hardly possible to solve this spectral problem exactly, therefore we shall
restrict ourselves by only considering the problem in the long-wave limit, where
k is small compared with the inverse soliton size 1/l, i.e., we introduce a small
parameter € = kl < 1. It means that the solution of the system (14) may be
found in the form of a series in the small parameter e:

u=ug + €uy + €ug + ..., W=ewy + Wy + ... (15)

To the leading order,
Lug =0, (16)
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which shows that wup are neutral modes. Among them there are two modes
corresponding to two independent infinitesimal translations of the soliton as a

whole, s
- Yo
uOl—'5;(¢a)f (17)
and s y
=2 0
g (%) i

Both modes are localized, and belong to the bound states. These modes have
different parities with respect to = and y. Function ug; is symmetric with respect
to y, and wupz is antisymmetric. The neutral modes generate two independent
branches with different parities that allows to consider each branch separately.
The kernel of the operator L contains also an eigen-function with zeroth eigen
value; this is a neutral mode,
Uo3 = ( __fzs ) )

corresponding to a small gauge transformation. This mode belongs to the continu-
ous spectrum and therefore it is not interesting from the point of view of possible
instability. As it follows from the first principles, unstable modes should be bound-
ed. Modes, which have a constant amplitude at the infinity, will evidently be
stable. In the case of one-dimensional solitons there are only two eigen-functions,
connected with translation and gauge in the kernel of L. It is therefore natural
to assume that in the 2D case there will be the three functions presented above
in the kernel of L. '
In the next order of the perturbation expansion, we obtain

waozug + Lu; =0 (19)

For symmetric perturbations this equation can easily be solved. Let us consider
equation (2) for the stationary soliton and its complex conjugate. Differentiation
of these equations with respect to v gives the equation,

. 8
~103UQy1 <+ LE-; ( :fg ) =0,

which coincides up to the constant factor iw with equation (19) for wuo = ug;.
Hence, we have
—:, 9 [ %o
uu—wa; ( ¢8 ) . (20)
The equation for the second order reads
1
wo3zuy — -ikzuo = —'Luz. (21)
The solvability condition for this equation is the orthogonality of its left-hand side
to all functions from the kernel of L. For the given case, due to the parity, a

nontrivial relation appears only for the function ;. As a result, we have

1
w < ug1|oslury >= ikz < uo1]uo; > . (22)
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Inserting Eq. (20) into this expression and integrating by parts, we arrive at the
dispersion relation

l= k2 <O 2

v ap/a < (23)
We recall that dP/8v < 0 as shown in Sec.2. Thus, the considered perturbation
turns out to be unstable with the growth rate (Im w) given by Eq. (23).
In the limit v — C, this growth rate translates to that for the instability of
two-dimensional acoustic solitons in media with positive dispersion [2]

2 P

w = 8P/8'vk2 =-2(1 - v)kz. (24)

For the case of small v € C, the growth rate (23) is also simplified by means of
(10) and (12),
w? = —(kv)*log(1/v). (25)

The instability governed by Eq. (24) represents the prolongation of the KP
instability of 1D acoustic solitons, while instability (25) corresponds to the Crow
instability for two parallel vortex filaments in ideal fluids [6]. In spite of the
difference between these two physical situations, the reasoms for both instabilities
are the same. As it was stated in Sec.l, if the soliton velocity decreases when
its amplitude grows, one should expect instability with respect to transverse
perturbations. It is important to note that this instability is of the self-focusing
type, and it is expected that the instability saturates at a level sufficiently larger
than the initial amplitude, if it saturates. In the acoustic region the instability
initiates in the nonlinear stage the collapse of acoustic waves [16], [17]. For
vortices this instability represents the first stage of the cardinal reconstruction of
the flow topology, i.e., of the vortex reconnection (see recent numerical results
[18]). It is also interesting to note that the general expression for the growth
rate (23) does not contain the logarithmic dependence on k, as follows from the
results of Crow [6] for filaments with zeroth width.

Let us find the dispersion relation for antisymmetric perturbations. To find
w to the leading order it is necessary to solve Eq. (19), where instead of ug
we should substitute ug2 from Eq. (18). For this case the solution can also be
found. Notice, if one considers soliton propagating under a small angle to the
z-axis, then the following relation may be derived

— 03Uz + Li— ( :ﬁ? ) lv,=0=0. (26)

The derivatives with respect to v, are easily expressed through the generator of
the infinitesimal rotation,
o

Bv, ——lv,=0= ——[K‘ x Viso. (27)
As a result, the solution has the form
u12=—%[rxV](:£g ) (28)

Next we change ug; by ug; from (18), and uj; by uj2 from (28) in (22) and
integrate by parts. After simple algebra we obtain the following dispersion relation
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for the antisymmetric perturbation,

2
w? = (kv)’f "ﬁ;’l 9 (ko)?S Pf >0 (29)
Thus, the antisymmetric long-wave perturbations are stable in the whole range of
soliton velocities including both limits, i.e., for vortex filaments and for the 2D
KP solitons. It should be noted that the frequencies (23) and (29) for both limits
transform into those obtained in [6] and [2].

4. The instability, which we found, turns out to be of the self-focusing type,
analogous to the instability of 1D (grey) solitons against transverse perturbations
{3]. In the nonlinear stage a self-focusing tendency would provide the division of
2D solitons or dipole vortices, into separate cavities. For vortex filaments these
cavities look like vortex rings. Such an assumption means that the process of
the cavity formation in this limit should be accompanied by the reconnection of
vortex filaments. If initially the soliton distribution has no zeros this instability
can be assumed to lead to the cavitation, i.e., to the appearance of zero in the
density profile, and, probably, at the later stages to the birth of the vortex rings.
" Recently the reconnection of vortex lines have been investigated numerically for
Eq. (1) in three dimensions [18]. The main result was that vortex filaments
of opposite ”circulation” would reconnect whenever they come within a distance
of a few core radii of one another. Further support for such scenario of the
instability development is the collapse of acoustic waves which can be considered
as the nonlinear stage of the KP instability of solitons. The acoustic collapse,
studied in details both theoretically and numerically [16, 17], demonstrates the
tendency of the catastrophic decreasing in the density profile for solitons of small
amplitude. Besides, recent experimental observations and numerical study of the
nonlinear development of the dark soliton instability showed the formation of a
point vortex street [19,20,22], familiar to the von Karman street in fluids. Thus,
all these facts support our hypothesis. To our opinion, it can be confirmed and
proved by performing three-dimensional numerical experiment.
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