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We study current-voltage characteristics in the magnetic-field-induced insulating
state of a 2D hole gas in low-mobility Si/SiGe heterostructures. The observed
behaviour of I — V curves is explained by the breakdown of the insulating phase
in the classical percolation model. Analysis of all experimental results obtained
on different 2D systems shows that none of them is in obvious contradiction with
classical percolation.

The metal-insulator tramsition is an important topic in the physics of 2D
systems subjected to a magnetic field. In the 2D case, dependent on the value
of conductivity o;,, one can distinguish two types of insulating phase. (i) The
Fermi level lies in localised Landau-states and extended states below the Fermi
level are available (as temperature tends to zero, g;; — 0 and 0., is quantized).
Traditionally this is called the quantum-Hall-effect phase. (ii) The Fermi level is
in the lowest band of localised states (both o;; and ¢, vanish with decreasing
temperature). These two might, in principle, be of different origin since the ground
state of an ideal 2D electron system in the extreme quantum limit is expected to
be a Wigner crystal.

Intensive studies of the scaling behaviour of the peaks in resistivity p,r on
relatively low-mobility heterostructures [I-4] created the impression that it is
possible to determine the critical exponent s for the localisation length L near
the metal-insulator transition in the quantum-Hall-effect phase. The unexpected
result s ~ 2.3 (the classical percolation model predicts s = 4/3 [5]) caused the
appearance of a number of theoretical works taking account of quantum tunneling
and interference effects in the percolation picture. Among these, some numerical
investigations [0-9] were performed for microscopic samples which are several
orders of magnitude smaller than those used in experimental studies. Therefore,
despite the coincidence between the calculated and experimental values of critical
exponent, their relationship would be tenuous if it were not for the analytical
results [10-12] substantiating the quantum percolation argument.

Recently, an approach has been formulated for determining the localisation
length in a 2D electron system, based on the analysis of nonlinear current-voltage
characteristics in an insulating phase [13-15]. The experimental results for a high-
mobility 2D electron gas in both Si MOSFET’s and AlGaAs/GaAs heterostructures
are interpreted within the classical percolation model, in contrast to the conclusions
of previous publications. The properties of all insulating phases, including the zero-
Hall-conductivity one, have been found to be very similar. The authors also argue
that the scaling behaviour is explained by the thermal broadening of conductivity
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peaks. In recent investigations of the metal-insulator transition in high-mobility Si
MOSFET’s [16], it has been found that the set of temperature dependences of the
longitudinal resistance near the phase boundary in both the metallic and insulating
phase can be scaled into one curve by using a single parameter Tp=e?/eL. The
localisation length L proves to diverge with the critical index s ~ 1.6, which is
close to that expected for classical percolation. Thus, the results obtained by
these alternative techniques are in complete disagreement with the interpretation
of scaling measurements. This discrtepancy might be due to the different quality
of samples used in different experiments.

Here we employ a method of current-voltage characterisation to investigate the
metal-insulator transition in the insulating phase with o;y = 0 of low-mobility
Si/SiGe heterostructures. We find that also this transition is described in terms of
the model of classical percolation which seems adequate for the currently available
2D layers in MOSFET’s and heterostructures.

The samples used are grown by solid source molecular beam epitaxy: detailed
information on the growth method is given elsewhere [17]. The 2D holes are
confined in an approximately triangular potential well at the surface of a SiggGeo 2
layer and have mobility ~ 2000 cm?/Vs at T'=4.2 K and density 2.5x 10*! cm~2.
Both the size quantisation and the strain present in the SiGe layer are responsible
for the splitting of light- and heavy-hole bands. The 2D hole gas (2DHG)
originates from heavy holes with angular momentum projection mjy; = +3/2. The
sample geometry is a standard Hall bar with dimensions 4.7x1.0 mm?; the distance
between potential probes is equal to 1.7 mm. At liquid helium temperatures there
is no sign of parallel conduction in the samples. The experiments are performed in
a *He/*He dilution refrigerator with a base temperature = 25 mK. We employ a
four-terminal dc technique with a Keithley 617 electrometer as high-input-resistance
amplifier. Currents through the sample do not exceed 1 nA; in this range hole
heating effects are found to be negligible.

The magnetoresistance p,,; shows Shubnikov ~ de Haas oscillations with periodic
minima in reciprocal magnetic field. Following the standard procedure, we determine
the values of both the filling factor corresponding to each oscillation minimum
and the hole density. The oscillation numbers turn out to be odd, which can
be interpreted as the coincidence of the cyclotron energy and spin splitting. As
compared to conventional quantum oscillations, there is another distinction in the
oscillations observed here: an enormous peak in the magnetoresistance between
the filling factors | and 3. At minimum temperatures the typical values of p.,
in this region of magnetic field far exceed the Hall resistance p;y, so that both
the conductivities o0z = pzz/(p2, + pi,) and oz = pry/(pZ, + piy) tend to zero
with decreasing temperature. This means that in the vicinity of the p;, peak the
2DHG is in an insulating phase; i.e., with increasing magnetic field there occurs
a metal-insulator-metal transition. This is very similar to the re-entrant behaviour
of the metallic and insulating phases observed in Si MOSFET’s and AlGaAs/GaAs
heterostructures.

In a tilted magnetic field, the peak In magnetoresistance increases strongly,
which implies that the metal-insulator phase boundary is pushed to higher hole
densities. As a result, in this case one can move more deeply into the insulating
phase when sweeping magnetic field. In the present paper, the measurements are
carried out at the angle ® = 60° between the direction of magnetic field and the
normal to the interface.
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Fig.l. Typical current-voltage curve in an insulating phase. Temperature T =60 mK is chosen to
make observable the linear interval of I — V characteristics. Procedure for determining the critical
voltage is shown

Fig.2. Dependence of the activation energy on magnetic field. Metal-insulator transition point is
indicated by the arrow. Inset: Arrhenius plot of the resistance in the linear interval of I -V
characteristics

In the insulating phase we observe strongly nonmlinear current-voltage characte-
ristics (Fig.1) while in the metallic phase these are linear, at least for the range of
currents used. Two quantities determine the shape of the I—V characteristics: the
critical voltage, U., corresponding to the onset of nonlinearities and the resistance
in the linear regime. We establish the type of metal-insulator transition by studying
the behaviour of I — V curves in the insulating phase near the metal-insulator
phase boundary.

The resistance in the linear interval of I — V' curves shows an activated
temperature dependence. The activation energy, E,, is determined from an
Arrhenius plot (inset in Fig.2). Similar to the case of high-mobility Si MOSFETs,
the value of the pre-exponential factor is close to 100 k. As seen from Fig.Z,
the activation energy changes linearly with magnetic field. The slope of this linear
dependence is inversely proportional to the density of states at a metal-insulator
transition point B. which can be found by extrapolating the straight line to zero
activation energy (Fig.2).

The critical voltage proves to be roughly a parabolic function of magnetic field
(Fig.3). This dependence rums to zero at the same magnetic field B. within
experimental uncertainty. Thus, in a similar way to high-mobility Si MOSFET’s
and AlGaAs/GaAs heterostructures, both the nonlinearity of I — V characiziisiics
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Fig.3. Square root of the critical voltage as a
function of magnetic field at T =~ 25 mK. The
value of magnetic field B, corresponding to metal-
insulator transition coincides with that in Fig.2
within experimental uncertainty
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and the activated behaviour of resistance in the linear regime disappear at the
same value of magnetic field, which is considered to be a point of metal-insulator
transition.

These results are now explained in the framework of classical percolation.
In this picture, metallic clusters in a 2DHG are separated at saddle points by
potential barriers with height equal to an activation energy FE, that is defined
as the difference between the percolation threshold E. and the Fermi level. In
sufficiently small electric field F, the clusters are equipotential regions and so
the barrier height decreases by eLF, where L is the cluster dimension (similar
ideas for doped semiconductors were developed in Ref. [18]). If the energy
eLF becomes equal to the activation energy (i.e., the barrier height vanishes)
localisation in the 2D system breaks down and the conductivity grows abruptly,
leading to nonlinear I — V curves [13-15]. Since near the threshold E. the
cluster dimension diverges as L(E) | E — E; |=*, the critical electric field for the
breakdown is written F. o< E3*! | B— B, |**!. By comparing the latter expression
with the experimental data we obtain s = I, in satisfactory agreement with the
theoretical value s =4/3. Thus, in low-mobility Si/SiGe heterostructures as well,
the breakdown of an insulating phase can be described by the model of classical
percolation.

The data obtained here, alongside the conclusions of Refs. [13-15], allow us to
suggest that classical percolation should be universal for 2D systems. Obviously,
this is in contradiction with both the resnlts of scaling measurements [1-4] and
the theoretical statements [6—12]. To understand the reasons for the discrepancy
let us first consider the theories [10—12] in more detaill. The idea used there
is to modify the classical percolation picture by making allowance for quantum
tunneling at the saddle points of a random potential. The tunneling gives rise
to increasing the cluster dimension and, as a result, to a change in the critical
exponent. We note that the phase coherence, which is necessary in the quantum
percolation model, takes place only if the tunneling processes are dominant. This
implies, at very least, temperatures close to zero and a temperature-independent
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conductivity. Otherwise, if the temperature is not sufficiently low either the
variable range hopping at a saddle point or thermoactivation to the percolation
threshold is expected to be more preferable than tunneling. Scattering events
break the phase coherence, thereby leading back to the classical picture. It is easy
to check experimentally which mechanism dominates: the results indicate that, at
minimum available temperatures, the conductivity in an insulating phase is always
due to variable range hopping. Therefore the theories [10-12] and also numerical
calculations [6~9] describe the limiting case that currently is not achievable in
experiments.

The majority of experimental papers on the scaling behaviour deal with mea-
surements of the half-width Ar of peaks in p;, as a function of temperature. The
data is described by the power-law temperature dependence Av oc T%; however the
exponent obtained is not universal with «=0.21 [4] to =~ 1 [2]. Moreover, when
plotted on a linear scale the same data follow the linear temperature dependence
with a finite peak width at zero temperature, which is consistent with the thermal
broadening of o, (or p.;) peaks in the classical percolation picture (see Ref. [14]).
In these studies there is also an inherent disadvantage: the authors perform scaling
measurements on Hall bar samples and neglect influence of edge channels on the
peaks in p,;. This results in weakening of the temperature dependence of Avr and
an underestimate of the value of the exponent x; however, it is difficult to make
strict evaluations of the effect. Similar problems exist with the interpretation of
the measurements of Av on the samples of different dimensions [3]. Hence, for
the time being there are no experimental results which would strongly disagree
with the model of classical percolation.

In summary, we have investigated the metal-insulator transition in the zero-
Hall-conductivity insulating phase of a 2D hole system in Si/SiGe heterostructures.
The behaviour of nonlinear I — V' characteristics in the insulating phase allows us
to establish the percolation nature of metal-insulator transition and to determine
the critical exponent s = 1 for the localisation length. The experimental data
is similar to that obtained on high-mobility 2D systems in Si MOSFET’s and
AlGaAs/GaAs heterostructures and can be explained in the framework of classical
percolation. This is in contradiction to the interpretation of scaling measurements.
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We describe the ideas empleyed in the first special-purpose Wolff cluster
algorithm computer able to simulate 3-dimensional Ising models. The computer is
fast enough to generate accurate data for lattices containing more than 16 million
spins, at and near the Ising critical point. We have used this computer to obtain
test results for the 2D and 3D Ising models at criticality. These are in an excellent
agreement with exact results and with independent simulations in software.

During the last decades, the Ising model has acquired a reputation as a
breeding ground for the development of new approaches to the physics of phase
transitions.

The exact solution of the 2D model, first given by Onsager [1], was simplified
by a number of authors. Now it is clear that the 2D Ising model is just a system
of free fermions. Nevertheless, even in the 2D case intriguing problems still exist.
For example, we mention the influence of impurities on critical behavior [2].

- In the 3D case no exact solution is available. Theoretical attempts to solve
the model persist for decades, and many interesting methods were developed on
this way, but the final success has not been reached so far.
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