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We consider the quantum-group self-duality equation in the framework of the
geuge theory on a deformed twistor space. Quantum deformations of the Atiyah-—
Drinfel'd ~Hitchin — Manin and t'Hooft multi-instanton solutions are constructed.

The quantum-group gauge theory was considered in the framework of the
algebra of local differential complexes {{ -3} or as a noncommutative generalization
of the fibre bundles over the classical or quantum basic spaces [4, 5].

We prefer to use local constructions of the nomcommutative connection forms
or gauge fields as a deformed analogue of the local gauge fields. In particular, the
quantum-group self-duality equation {QGSDE) has been considered in the deformed
4-dimensional Euclidean space, and an explicit formula for the corresponding
one-instanton solution bas been constructed {3]. This solution can be treated
as g¢-deformation of the BPST-instanton {6]. We shall discuss here quantum
deformations of the gemeral multi-instanton solutions {7].

The conformal covariant description of the classical (ADHM) solution was
considered in Ref.[8]. We shall study the quantum deformation of this version of
the twistor formalism. It is convenient to discuss firstly the deformations of the
complex conformal group GZL(4,C), complex twisiors and the complex linear gauge

groups.
: Let R% (a,b,c,d...=1...4) be the solution of the 4D Yang-Baxter equation
satisfying a.lso the Hecke relation
RR R=R RR, 1)
Ri=I+(q—q YR (2)

where ¢ is a complex parameter. Note that the standard notation for these R -
matrices is R-Rlz, R"Rn [9].
Consider also the SL,(2,C) R-matrix

R3E = 98288 + €*P(g)e 4 (q) (3)

where ¢(q) is the deformed antisymmetric symbol.

Noncommutative twistors were considered in Ref.[10]. We shall use the R-matrix
approach to define the differential calculus on the deformed twistor space.

Let 22 and dzl be the components of the g-twistor and their differentials

RED 28 o = 22 o R, C)
2g dzf = R3 dzt 2§ RE, o)
dzg dzf = —R2f dz¥ dz§ RE. (6)
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One can define also the algebra of partial derivatives 3]

Rgg 8; 83 = oz 8 R, (7
82 2} =62 68 + RPE R 74 85, (8)

Consider the 4D deformed ¢,-symbol

ejc 1 avce
Rjt egfed = e, 9)

The g-twistors satisfy the following identity:

:"Cd zf 2t 25 =0. (10)

The SLg(2)-invariant bilinear function of twistors has the zero length in the
projective 6D vector space

Yab = Eap((I) zg l [P( )]ba Yed, : (11)

(% ¥) = €2*? yap yea = 0. (12)

Consider a duality transformation * of the basic differential 2-forms [3]
xdz dz =dz dz’ P — dz dz' PO, (13)

where P(%) are the projection operators of GL4(4) [9]. Note that the self-dual
part dz dz' P(Y) is proportional to

cap(q) dzZ dz). (14)
Let T} be matrix elements of the GL,(N) quantum group
ReTT' =TT Rg, (15)

where Rg is the R-matrix of GL4(N).

Quantum deformation of the GL,(N) gauge connection can be treated in terms
of the noncommutative algebra for the components A} of the connection 1-form
L, 2

(ARG A+ Rg ARg ARg)} =0 (16)

where 4,k,{,m,n,p=1...N. These relations gencrahze the anticommutativity
conditions for components of the classical connection form.

The restriction on the quantum trace of the connection a = TrgA =0 is
inconsistent with (16), but we can use the gauge-covariant relations a®=0, Tr 4% =
0 and da =0 [3]. The curvature 2form F =dA — A? is g-traceless for this model.

Consider the explicit realication of this gauge a.lgebra. in terms of z,dz and the
set B of additional noncommutative parameters

Ay(z,dz, B) =dz2 A% (2, B). (17)

The analogous realizations were considered on the GL4(2) and E,(4) quantum
spaces [1-3]. We shall treat the representation (17) as a local gauge field on the
g-twistor space.
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Let us consider the quantum deformation of the GL(2) t'Hooft solution [8]:

A3 = g7%dzZ (858)3 e (g)eap(9), (18)
e =Z(X")—1, X = (y,5) = e2yay By, (19)

where b%, are the noncommutative isotropic 6D vectors
dbi;=0, (V,5)=0, (20)
[Yab, X*] = [bea, X*] = 0. (21)
The central elements X* of the (B,z)-algebra do not commute with dz:
X' dz2 =g*dz2 X°. (22)

Stress that Ag satisfies Eq(16) and its quantum trace is a U(l)-gauge field
with the gero field-strength

TrgA=—q 2d®®~!, Tr,dA=0. (23)

The QGSDE for Ag is equivalent to the finite-difference Laplace equation for the
function ® on the g-twistor space

. 1
ba Y ba = 24
A @(X*) Z:A =0 (24)
1
a%e = < jqz e (q)0505% = (8" + 7vead*8")8, (25)
Byea =[P, *X) = —g7H(XF)T(H). (26)

The ADHM-twistor functions of Ref.[7] can be connected with some GL(N +2k)
matrix function. Let us introduce the notation for indices of different types:
I, K,LLM=1...N+2k and A,B=1...k. The Ansatz for the general self-dual
GL,(N,C) field contains the deférmed twistors u(z) and i(z)

A} =dubif, ublaf =6;. (27)

The commutation relations for the u a.nd u twistors are

(RG)lm“I“K - “},“ﬁlnflgv (28)
Rﬁ’t,ﬁLuﬁl =4 “m(RG)k. ’ (29)
iif (Rg)mmiuR =uf R i, (30)

where the R-matrices for GLy(N,C) and GLy(N + 2k,C) are used.
Consider also the linear twistor functions v and ¥

vf® = 2Zbg4, (31)

iAo = plaezg, (32)

366



Introduce the following condition for these functions:
v;{aﬁIBﬂ = gAB(z)eap(q)’ (33)
where g(z) is the nondegenerate (k x k) matrix with the central elements

9*%(2) = + —=— b4 BB . (34)

The condition (33) is equivalent to the restriction on the elements of the
B-algebra

[PO]zd b4 75 = 0. (39)
Wirite the basic commutation relations of the B-algebra
bcA de = buB bbA R'KI , (36)
RIK, fLAc MBb - pab jIBc fKAd (37)
Rab bcA bKBd RKL bMBa baB (38)

Remark that a formal permutation of the lndlses A and B is commutative. It is
not difficult to define the relations between b,b and z,dz.
Consider the new functions

4o = 94B(2)eap(q)' PP (39)

where we use the inverse matrix with respect to the matrix (34).
Now one can construct the full quantum GL (N + 2k, C) matrices

i ~T
= ur -1_ Uy
v () v () (40)

The standard GLg(N + 2k,C) commutation relations for these matrices contain
Eqs.(28)-(30) and the relations for the v and ¢ functions.
Write explicitly the orthogonality and completeness conditions for the deformed

ADHM-twistors

u -IAa = 0, (41)
vie @l =0, (42)
6k =4 v + v“" 948(2)eap(a) V2 - (43)

The gauge-field algebra (10) for the deformed ADHM-Ansatz (27) can be
generated by the differential algebra on the GL4(N + 2k,C) matrices U, U™}, dU
which contains the following relations:

@ (Rg)im dug = duf (R™)iariim, (44)
duy, dujy (R™HIR = (R )im duf duR. (49)

These relations are consistent with the commutation relation (28)-(30).
The self-duality of the connection (27) follows from Eqs.(31), (32), (41)-(43),

dAy — A} Ay =duf (@] uly — 63, )dad = —uf B74% gup(2)eap(q) dz& d2f bEY aM. (46)
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This curvature contains the self-dual 2-form (14) only.

It should be stressed that all R-matrices of our deformation scheme satisfy the
Hecke relation with the common parameter gq. The other possible parameters of
different R-matrices are independent. The case ¢ =1 corresponds to the unitary
deformations (R? = I) of the twistor space and the gauge groups. It is evident that
the trivial deformation of the z-twistors is consistent with the nontrivial unitary
deformation of the gauge sector and vice versa.

The Euclidean conformal g-twistors are a representation of the U*(4)} x SU,(2)
group. The antiinvolution for these twistors has the following form:

 (28) =cap(9) 4 C2, (47)

where C is the charge conjugation matrix for U*(4). We can use. the gauge group
Uy(N) in the framework of our approach.

An analogous construction can be considered for the real twistors and the
gauge group GL.(N,R).
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