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Dyonic classical solutions of SU(2) gluodynamics are considered and their
interaction and contribution to the Wilson loop are investigated both analytically
and numerically.

1. Introduction The QCD vacuum is known to possess properties of confine-
ment and chiral symmetry breaking (CSB). The first is, for example, characterized
by the area law for Wilson loop [1], the second is connected to nonzero values of
chiral quark condensate. Both properties were found in lattice calculations {2] and
are connected to nonperturbative fluctuations of gluonic field in the vacuum.

By now there is no model of QCD vacuum with properties of confinement and
CSB, based directly on the QCD Lagrangian. The most elaborated model is the
instanton gas or liquid model (3] which ensures CSB but lacks confinement [4].
Thus it is an urgent need to look for more realistic model of QCD vacuum which
obeys both basic properties. The confinement is associated widely with monopole-
like degrees of freedom [S] which may be of purely quantum or quasiclassical
character. In the latter case one should look for classical solutions of Yang-Mills
equations of monopole-like form. These solutions are known for a long time [6, 7).
They have both color-electric and color-magnetic fields and we therefore shall call
them dyons [8].

The dilute dyonic gas has been suggested some time ago as a model of QCD
vacuum [9] and some simple estimates of Wilson loop have been done for dyons
of finite time extension, demonstrating nonzero string tension.

Recently, the interest for the dyons has revived. In particular, lattice studies
of a classical and quantum field of a dyon have been done and a qualitative
quasiabelian picture of confinement due to dyons was suggested [10].

The purpose of this letter is to make a first step in a more general consideration
of dyonic gas. This step is connected to the problem of dyons interaction.

The letter is organized as follows. In section 2 we define a single dyon solution
in different gauges. In section 3 we calculate Wilson loop for a single dyon and
dyon-antidyon pair and demonstrate the phenomenon of nonabelian screening in
the latter case. In sections 4,5 we consider dyonic gas model and the problem
of dyons interaction. Section 6 contains concluding remarks and perspectives of
future investigations.

2. Dyonic solution. One way to present the (anti)dyonic solution is to
consider the case when an infinite number of (anti)instantons (in the ’t Hooft
Ansatz[l11] ) are equally spaced along a straight line (time axis).

Af = €iabOpIn p F 6;4001In p

679



AS=48,Inp ,

> 1
prit) = _z: r2 4+ (t — 2xn)? = (1)
_ Isinhr 1

2 r coshr—cost

(we use here units,where y =2x/b=1, b is the distance between instantons). These
solutions are (anti)selfdual. The potentials and fields look like
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For large r (r 3> 1) the potentials A?, AJ go down like 1/r and fields E?, H?
go down like 1/r2. The total action of dyon is proportional to its time extension
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In the future we will refer to this dyonic solution as "dyon in the ’t Hooft
gauge”. In another gauge ("dyon in the Rossi gauge”) dyonic solution can be
made static[7]. Namely, making the rotation
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we find that potentials and fields are
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This means that all gauge invariant quantities are not simply time-periodic but
also static. The remarkable feature of dyonic solution in the Rossi gauge is that

+E? = B? = nona(f' -
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it looks like t’Hooft—Polyakov monopole in the Bogomol’nyi—Prasad —Sommerfield
limit if zero component of dyonic potential is substituted by scalar field of
monopole. Thus, (anti) dyon carries, like monopole, magnetic charge. Unlike
monopole, it carries electric charge, electric charge being equal to (mines) plus
magnetic charge.

3. Wilson loop for 1solated dyon. We will consider the spacial loop of
circular form. When the distances from dyon to all points of the loop are much
larger than the size of dyon (the size of dyon equals to 1/y=1 in our notations)
the calculations are very simple. For large distances from the dyon the fields of
dyon can be made purely abelian by appropriate gauge rotation. The integral
¢ § A;dz; measures then the flow of magnetic field through the loop and is equal
to Q@ (Q is the solid angle under which the loop is seen from the point of dyon
location). So, we have the answer '

Ta

5 )= —1~Tr exp(iﬂ%s) . (5)
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When the distance from the dyon to some points of the loop is smaller than the
size of dyon the finite size effects are important and the result (5) is smoothly
modified. Fig.la shows the results of numerical calculations for the loop of the
radius equal to 10.

Fig.l. The Wilson loop integral for isolated dyon (a) and for pair of dyons (b).
The loop lies in XY plane and has radius equal to 10. The result is presented as
function of cylindric coordinates of dyon (a) or pair of dyons (b) (r,z) measured in
units of radius of the loop

An interesting feature of nonabelian screening can be seen for two dyons or
dyon-antidyon of zero separation. In the Rossi gauge, for example, the spatial
potential is then doubled. The magnetic field of such a potential has no Coulombic
part and falls off exponentially. The Wilson loop is trivial anywhere except for
the boundary of the loop (see Fig.lb).
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4. Dyonic gas model of the QCD vacuum. We suggest the superposition
ansatz for the dyonic gas, similar to instantonic gas [3], namely

Au(z) =240 (2) (6)

where the individual (anti)dyon field A,(j) depends on the position R(®), O(4)
orientation w(*) and SU(2) (color) orientation Q(*)

Af,")(z) = 0Ot 4, (z, RD), w)Q® (7

The resulting potential (6) is no more the solution of Yang-Mills equations, it
can be only close to the solution for large separations of dyons (gas approximation).
Moreover, the resulting fields depend on the gauge we are using for the (anti)dyon
solution (the sum of potentials in one gauge is not connected to that in another
gauge by any gauge transformation). To keep the diluteness property of the
dyonic system (6) one must choose therefore the gauge of individual solution A,(:)
in such a way as to get a minimal attraction. The large distance interaction
crucially depends on the asymptotics of Af,'), and the latter is connected to the
class of gauges, different classes are connected by singular gauge transformations.
In particular, in Rossi gauge the topological charge comes from the infinite point,
while in the ’tHooft gauge it comes from the points r = 0,¢ = 0,2r,.... The
interaction within the given class depends also on the specific gauge chosen, but
that dependence is largely taken into account by the orientation matrices () in
(7).

In what follows the first piloting study is reported of the dyon-dyon and
dyon-antidyon interaction in two representative classes of gauges: the ’tHooft and
the Rossi gauges.

5. Dyon-dyon and dyon-antidyon interaction. We will describe two dyons
or dyon-antidyon pair by the sum of their potentials. One should choose an
appropriate gauge for single (anti)dyon solution in such a way that the interaction
in this gauge at large distances is small. The Rossi gauge [7] is not appropriate
for this purpose: the interaction energy diverges in all cases except for the case of
dyon-antidyon pair where dyons are of equal size, have the same O(4) orientation
and the same SU(2) orientation. And in this special case the interaction energy
grows linearly with the separation of dyon and antidyon. Another possibility is the
'tHooft ansatz (2). As we will see later the interaction of dyons for large distances
is repulsive in this ansatz, more repulsive than in other gauges (in Abelian gauge,
for example). We consider this fact as self-consistent motivation for considering
dyons as the gas system. By now, this is the only reason why we have chosen
the ’tHooft ansatz for dyon solution. Here we have two peculiarities. Because the
potentials of dyons depend on time (they are periodic in time and the period is
equal to 2r ) the interaction energy is also time-dependent. Therefore, we will
average the interaction energy over the period. The interaction energy depends
also on the relative shift of dyons in time direction (relative phase). Thus, the
interaction potential is the function of separation (r), relative phase (¢), relative
SU(2)orientation (R), relative velocity (v). Here we will consider only the case
when R=171 and v=0. The dependence on R,v will be the subject of separate
investigation. The functions Vg(r, W)’Vdé (r.¢) were calculated numerically. They
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are plotted on Fig.2(a,b). For r — 0,90 — 0 V“’Va,} are logarithmically divergent.

For large r(r ~ 10) Vd& is approximately equal to (’;—5 and Vi = -272, although the

-} dependence is not clearly seen. We can compare this result for Vgg and Vd&
with the results that we should expect in the Abelian gauge, where dyon-antidyon
have gzero interaction (magnetic charges have the same sign and electric charges
are of opposite sign) and dyon-dyon interaction is % (both electric and magnetic

charges are of the same sign).

Fig.2. The interaction energy for two dyons {a) and dyon-antidyon pair (b) as
function of their separation snd relative phase. The interaction energy is measured
in units of dyon mass {ZF)

The absolute minimum of Vy4 is zero {r — o0) and the absolute minimum of
Vs —1.3 (¢ =n,r=10). So, dyon-antidyon attract stromgly at small distances
when the ielative phase is m. Dyon-dyon also attract in the region p=m,r=0
but in contrast to the dyon-antidyon case the interaction energy is here positive.

6. Concluding remarks. We have calculated the interaction energy for
dyon-dyon and dyon-antidyon pairs. In the ’tHooft ansatz for dyonic solution the
calculations show that this energy is minimal when dyons have opposite phase. In
this case, the dependence of energy on separation between dyons is different in dd
and d d systems. For large r Vg > Vd& (a factor =~ 40 for = = 10).One should
compare our results for Vyg with those obtained in the ansatz of Manton [12],
where Vyg vanishes. This latter property holds for an exact two-dyon solution of
general form [13].

As a next step we plan to study the dependence of Vj; and Vd; on relative
orientation in color space and relative motion of dyons (we use the word motion
in analogy with interaction of particles in Minkovski space). This will be the basis
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for considering the gas of dyons and calculation of its contribution to the Wilson
loop.
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