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The existence of topological defects, known as skyrmions, within the spin
excitons energy band of a 2D electron ges under a strong magnetic field at filling
factor v = | is investigated within the Hartree-Fock approximation. Using the
linear momentum representation, it is shown that the inhomogeneity created in the
system by a charged skyrmion can be described by a nonuniform rotation of the
spin density operators in a condensate of spin excitons.

Chiral fields, namely fields which take on values in a nonlinear space, can have
some nontrivial topological invariants [1]. Thus the existence of such invariants
in a physical system can lead to the creation of unusual topological defects. In
particular, Belavin and Polyakov [2] have studied nonuniform metastable states of
an isotropic 2D ferromagnet, i.e. a three component order parameter in a 2D
cocrdinate space, which is known as the non-linear O(3) model (see also ref.[3]).
To avoid any misunderstanding we shall use, in what follows, the term skyrmions
(or antiskyrmions) to describe such states for any positive (or negative) degree of
map.

The possibility of cbserving experimentally states of this sort in real magnetic
systems has been recently raised in connection with a sensitive nuclear magnetic
resonance experiment [4] in which the local spin polarization of a 2D electron
system was directly measured. Theotetically such a system can exhibit, at
appropriate filling factors, spin excitations with topological characteristics; at filling
factor v =1, for example, where the ground state is completely spin polarized,
they have been shown to be skyrmions [5-8].

Fertig et al. [9] have developed a Hartree—Fock approach to study what
they termed ’'charged spin-texture excitations’ — the appropriate generalization of
skyrmions for nonzero Zeeman splitting. They have found that their net spin
is always considerably larger than % This important prediction seems to be
confirmed by the experiment reported in ref.[4].

In this paper we present a Hartree—Fock description of charged skyrmions in-
the absence of Zeeman spliting, which clearly shows the connection between these
unusual point defects and the more common spin excitations (e.g. spin-excitons
[10]).

We examine the properties of a system of interacting elecirons confined in a
2D space under a strong magnetic field. In this system the states of a free
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electron on a given Landau level is characterized, in the Landau gauge for the
vector potential, by a linear momentum py(= p) and a projection of the spin. The
operators &, (b,) annihilate electrons with momentum p and spin up (down).

In the absence of Zeeman splitting the Hamiltonian of the system is written
as

.1 S SN o e
H= 3 Z V(q)e'?=(?2 px)[a;,la},zap;ap; +(@a—b)+ Za'f,1 b‘t”bplzap',] (1)
q,p1,P2

where p; =p1—qy, p/z =ps+¢y , and the effective potential is V(q) =e'9=/2V(q) for
electrons in the lowest Landau level. Here V(g) is the Fourier component of the
interaction potential. Note that all lengths are measured here in units of magnetic
length lgy.

In the Hartree—Fock approximation the mean value of the Hamiltonian (1) can
be written as

N 1 . ' . PR . . -
< H >= 3 Z e9=(Pa=P1) [V (q) — 27 E(q)][< a},lap/1 >< a},’ap; >+(@— b)) +
q,p1,P3
+ V(g) <aba, ><blb, >-2nE(q) <alby ><ba,>}. (2

In Eq.(2) the energy
d’p - i5.d
£@) = [ G270

describes the dispersion law for spin excitons in the system.

Our approach to the problem of skyrmions in the two-sublevel system in the
absence of Zeeman splitting is closely related to the method of isospin operators
used in the study of electons in a silicon inversion layer, which have two degenerate
valleys [11]. Following ref. ([11, 12]) we introduce isospin operators

N 1 .
Si(@)=5 Z e’q”(p+q”/2)c,t,aicp+q,, (3)
2
b4

where o; are the Pauli matrices, and Cp = (G, bp).
An additional operator corresponds to nonuniform density of particles

ﬁ(q) = Eeiqa(p+qy/2)(a;ap+qy + ELBp+qy) . (4)
P

In terms of the mean values of these operators, i.e.:
N(q) =< N(q) >

and
S(q) =< S(q) >

Eq.(2) takes the form

<H>= Z{%[V(q) — nE(q)]N(q)N(—a) - 27E(9)S(q) - S(-a)} - (9)
q
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The fully polarized state of the system, which corresponds to the filling factor
v=1,1is |¢$o > =H,&L|0 >. .
The key element of our HF description of skyrmions is a canonical transforma-
tion R
Ap = E(Up,p:apx + Vo.p10p1) (6)
P
with the unitarity condition UU! + V¥Vt =1, which converts the fully polarized
state |yo > into a new state | >=T,A}|0>.
In the new state: < ylalay|p >= (@10), , » < Blbbyl¥ >=(VIV), , , and
< ¢|&;bp: ¥ >= (V'U)p',p- .
To be explicit, for the skyrmion state under consideration here we define:
. é .
U = cos 5e'¢/2 ,

v = sin-g-e""‘i’/2 (7

where the operators §, and @, which describe nonuniform rotation, should be
projected on the lowest Landau level. Thus the corresponding matrix elements are:

(0)pp' =[6(), = D 8(@)(IT), =~ 6(a)Ba),, (8)
o q q

where 6(q) is the Fourier transform of the angle 6(r) with respect to coordinates.
A similar expression can be written for (¢), .
With the help of Egs.(3), (4), (7) we obtain the following results:

S.(a)= % I it 0+02/3) (=913 cos G/ 4 €913 cosfe= W), 9)
P
Si(q) = % Z eiq°(p+q’/2)(ei$/2 sin ée“i’/z)pﬂy,p (10)
)
and )
N(q) = 5-6(a) +6N(q) (11)
" §N(q) = —;— Z e"q’(”"'q"/"’)(ez""i’/2 cos fet®/2 — ¢i9/2 cos ée"&/z),,.,.qy,p . (12)
P

We are interested here in the case when the spatial dependence of the angles
O(r), and ¢(r) is sufficiently smooth so that the characteristic length scale for the
coordinate dependence is much longer then the magnetic length. Our main goal
is to express the energy of the system in the HF approximation (Eq.(2)) as a
functional of the spin and particle densities, which includes terms up to second
order in a gradient expansion.

Let us comsider the correction 6N(q) (Eq.(12)) to the density of particles due
to our nonuniform rotation of the spin density. Taking advantage of the smooth
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spatial behavior of the rotation angles, which results in a small commutator [z,z,é],
and the approximate identity

e“e® ~ (1 4[4, B])ePe? (13)

which is valid for any two operators A and B of this type, we get after very
simple calculations

R s e
éN(q) ~ Eze"”("”’”)(w, 0]sin6)p1q,,p - - (14)
P

A similar expression can be derived for the spin density, i.e.

: 1 . o
S:(q) =~ 3 Z eiq"(pﬂ”/z)(cos 0)p+ay,p (15)

P

while for S,(S,) we should replace cosf in Eq.(15) with sin§cosé (sin8sin ).
For the small values of g considered in our case [13]:

[Pq..Pq.] ~ —i(la1 x az] - ) g, +qs > (16)

where Z is a unit vector along the field direction.

Our final result for the correction to the density of particles in coordinate
representation

is thus

én 6n

32 < 3 (17)

SN(R) = 4= {16 (1) x VO ()] -2} sin (1) = (- [0 x )

where n(r) is a unit vector field defined by the rotation angles 8(r), and ¢ (r)
as:

n (r) = (sin 8 cos ¢, sin B sin ¢, cos §)
This vector is proportional to the mean value of the spin density operator, i.e.
n(r)=4xS (r)

which has nonzero transversal (i.e. z —y) components only when the number of
spin excitons in the system is macroscopic. It is also easy to check that the part
of the energy associated with the spin density.

Eqs.(9), (10), can be written as

§E{S}= %E(O) / (V -n(r))?d?r (18)

so that the total HF energy can be written as a functional of a unit vector field
n(r): '

Eurp ~ —%E(O)/dzr(n- [-‘;;—‘ x Z—;‘]) + %E(O)/(ﬁ-n(r))zd"’r . (19)
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Note that since the spatial dependence of the angles 8(r), ¢(r) is yet unspecified
the vectorial field n(r) is absolutely arbitrary, except for the fact that its norm is
unity, and so the energy functional in Eq.(19) is only a variational form.

The integral

= Zl_;/dzr(n . [Z—: X —g—z]) (20)

is equal, due to Eq.(17), to the total number of particles added to, or removed
from the system by going from the fully polarized ground state [ > to the new
state | >. It is known to be topologically invariant [1-3], that is invariant under
any smooth variation én(r), and its values can be only integer numbers.

The new state |4 > ‘is therefore a topological defect characterized by the
degree of map Q; it is positive for a skyrmion and negative for an antiskyrmion.
According to well known results [2, 3] the minimal energy of a skyrmion for any
given degree of map Q corresponds to the condition

/(6n)2d2r=2|/d2r(n-[3~;‘ x -Z—’;m . (2Y)

Thus for a given degree of map @ the minimal energy of a skyrmion is

By 0501~ 29) @)

In the case |@|=1 this result coincides with that obtained numerically by Fertig
et al. ([9]).

It is very important to stress here that the spin-rotation transformation (7)
is unitary and does not change the total number of electrons. Thus by going
to the new state |¢p > from the fully polarized ground state [¢ > the total
topological charge does not change either. This can be done only by creating
these topological defects in pairs of well separated skyrmions and the corresponding
antiskyrmions with equal and opposite charges. The total energy of such a skyrmion
— antiskyrmion pair, with degree of map Q =1, is exactly equal to one half of
the total energy tequired to create a well separated electron-hole pair (large spin
exciton).

Since Zeeman spin splitting is completely neglected in our model, its O(3)
symmetry is fully preserved, and there is no definite length scale for skyrmions.
In this limiting case the skyrmion energy (Eq.(22)) is independent of the skyrmion
size, provided, of course, that it is much larger than the magnetic length ly.
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