Pis'ma v ZhETF, vol.62, iss.1l, pp.839 - 843 © 1995 December 10

RADIATIVE MECHANISM OF LEPTON BOUND STATES
PRODUCTION

A.IAkhiezer, N.P.Merenkov')

National Science Centre "Kharkov Institute of Physics and Technology”
310108 Kharkov, Ukraine

Submitted 2 November 1995

The radiative mechanism of lepton bound states formation is investigated.It
concludes in a real photon emission and bound state production at free lepton
interaction. The cross-sections for corresponding processes are derived, and some
figures given for the case of positronium formation in free electron-positron collision.

The different bound states of opposite charged leptons may be produced due
the electromagnetic interaction. The same interaction leads to the formation of
the bound states of leptons with proton and antiproton. The theory of all these
states bases on the Coulomb interaction and consequently it may be constructed
by the same method.

We shall show the theory of such states formation first of all on the example
of the positronium. Note that the quantum states and decay mechanisms of a
positronium are well known in theory [1,2]. Moreover, the mechanism of the
radiationless capture of the positron with an atomic electron is well investigated
(see [3-6] and references therein). Meanwhile there is another mechanism of
positronium formation, namely the mechanism of radiative capture. It describes
the formation of the positronium in electron-positron collision with the resulting
emission a real photon. In this case both the initial particles (electron and
positron) are free. This mechanism is in the essence analogous to the radiative
capture of a proton by a neutron (first investigated by Fermi [7]), which result
in real photon emission and deuteron production. The study of this mechanism is
of great interest, especially in connection with electron-positron plasma properties
investigation [8].

The theoretical description of the radiative capture is straightforward as it is
based on the general methods of quantum electrodynamics perturbation theory.
We deal here with the radiative transition of particles from the free state to the
bound one. Therefore this mechanism may be considered as a peculiar inverse
photoeffect. It may be used for investigating the formation of the different bound
states. In this paper we consider the mechanism of the radiative capture of leptons
with arbitrary masses which results in a real photon radiation and bound state
formation.

In Section 1 we give the formulae for corresponding matrix elements and cross-
sections, and in Section 2 the case of positronium formation is investigated.

1. In this Section we consider the tramsition of the system containing two
opposite charged free particles into the bound state. This tranmsition must be
accompanied with a real photon radiation. For a definition we shall speak about
the transition electron and muon to muonium (but the all derived formulae can
be applied to any radiative transition process of two opp051te charged particles
interacting by Coulomb law):
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where corresponding 4-momenta are indicated in the brackets.
The differential probability of the radiative transition (1) related to the unit
volume and the, unit time may be written as follows
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where w is the energy and dQ is the solid angle element of photon. The
reduced matrix element which enters into Eq.(2) will be defined as

M= / &Pr¥(r) (%n‘le‘kxf + ?r‘kﬂ) ¥(r), 3)

where r is the radius-vector of the related motion, p(m) is muon (electron)
mass, k;=pk/(u+m) , kr=mk/(p+m), Vv =8/3r. Wave functions ¥;(r)
and ¥y(r) describe the relative motion of the electron and muon in the initial
and final states, respectively. The photon energy w is related to the initial
electron momentum p_ = p and the binding energy of the muonium by
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In the problem under consideration the wave functions ¥; and ¥; must
be the eigenfunctions of the same hamiltonian. Since ¥; is the bound-state
wave function, it is obvious the that the influence of the interaction on the wave
function must be taken into account in the initial state too. This means that
U,(r) has the structure of the wave function of the continuous spectrum of
the charged particle in the Coulomb field, and this ensures the orthogonality of
¥;(r) and W¥s(r) . In the process (1) the free electron and muon exist only
in the initial state, therefore the function ¥;(r) at large r's must have the form
a superposition of the plane wave and the outgoing spherical wave. The function
with this asymptotic is [9]

¥;(r) = exp(n¢/2)T(1 — i) F(iC, 1,i(pr — pr))e’P* = ¥(p, 1), )

where {( = amp/p(m + p), a = 1/137 is the fine structure constant, F is the
hypergeometrical function. Note that the function ¥(p,r). is normalized in the
same way as the plane wave

/‘I"(p, r)¥(p’,r)d%r = (27)36(p — p’)
We take the ground-state wave function of the muonium as

n® mua
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where 1/n is the muonium radius.
Using wave function (5) and (6) we derive with the help of the Gauss theorem

m
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where
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N = /7T exp(n¢/DT(L - i),
The integral which enters in (7) can be counted with the help of the following
formula [10]
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It is easy to show that
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When writing the last formula we took into account that ak; =ak; =0.
The matrix element squared will be defined as follows
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It follows from (4) that the photon energy w << p if the kinetic energy of the
relative motion of the initial particles more or the same order as the muonium
binding energy. Therefore the expression for A can be expanded in this limited

case as . ( o g
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where © is the angle between vectors p and k.
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If the momentum of the relative motion of the iitial particles p << 7n the
corresponding expression wil be defined by the formula _

(m+ p)? 8p? 8pcos© (ﬁ 3 El) _ 4(k1 + k2)?cos® ©
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When writing (11) we took into account that in this limited case the photon
energy is of the order of the muonium binding energy: w=Amxan <.

The differential probability (2) defines the differential cross-section do =dw/v,,
where v, =p(m+ p)/my is the relative velocity of the electron and muon in the
initial state. (We suppose the particle densities equal to unit).

Thus, summing over photon polarizations we can write the differential cross-
section of the process (1) in the case p>7n as follows
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If the initial particles have equal masses : pu=m (as in the case of radiative

transition of an electron and a positron to p051tron1um) the second term in the
brackets is absent.

The angular integration of the r.h.s. (12) gives the followmg expression for the
total cross-section of the radiative capture of the electron by the muon
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Formula (13) is valid for the cross-section of the radiative capture opposite charged
particles with arbitrary masses which interact by Coulomb law. It applied to the
process of positronium formation at free electron and positron collision as well as
to the muonium formation and to the capture of electron, muon and 7-lepton by

proton.
2. In the case of radiative tramsition of an electron and a positron to the
positronium we have

12,2, ¢? 3 g—tarctg( w?(1 = (2) am
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and the photon energy is defined from the energy comservation law :
w+w?/4m = p*/m + o*m/4.

This formula is valid if (<1 .
If the relative momentum of the initial particles is very small, and (¢ > 1
then the differential cross-section for positronium formation has a following form
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The angular integration of (14) gives the total cross-section

2°72a3e~4 10p% + IZwZ]
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We see that in the case of small initial electron momenta the cross-section is
proportional to p~% in contrast to the cross-section of the slow neutron capture
by proton, which behaves in this case as p~! . This is the consequence of the
long-range Coulomb interaction as compared with short-cut strong interaction.

Note that the total cross-section o of the positronium formation is derived
without taking into account the particle spins. Consequently, in order to obtain
singlet positronium production we must multiply it on 1/4. In the case of triplet
positronium we have to sum over spin states of the positronium, and this gives a
trebled cross-section value

Sl o3,
47 47

Table lists the total cross-section values calculated by formula (14) for the

rsdiative transition of the electron and positron to positronium at p-values ranging

between 1Kev/c and 100Kev/c.

The total cross-section of the positronium formation

p(keV/c) o(cm?) p(keV/c) o(cm?)

1 3.92.10-% 21.5 4.34.10-26
2.15 52.10-%2 46.4 1.08 - 10-2%7
4.46 3.69.10-23 100 2.41.10-2°
10 1.48 - 10-2¢

The cross-section o increases and reaches very large values as the energy
of theinitial particles decreases. In consequence, process considered should be take
into account on investigating the electron-positron plasma properties, as well as
the low energy -annihilation of electron and positron into photons.
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