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The fundamental master equation for probabilities of various atomic distributions
over lattice sites in an alloy is used to develop the theoretical description for the
alloy configurational kinetics. Exact equations for temporal evolution of local
concentrations and correlators as well as for the nonequilibrium alloy free energy
are presented. Methods for the approximnate treatment of these equations are
discussed.

PACS 82.20.Mj, 05.20.Dd

Problems of theoretical description of nonequilibrium statistical systems attract
attention in many areas of physics. For equilibrium systems, such description is giv-
en by the Gibbs distribution and the statistical thermodynamics, but for the states
far from equilibrium, the similar standard approaches are not available. Elaboration
of such approaches is of particular interest for the cofigurational alloy kinetics,
the atomic distribution evolution in nonequilibrium alloys. The microstructure and
macroscopic properties of such alloys, e.g. strength and plasticity, depend crucially
on their thermal and mechanical history, for example, on the transformation kinetic
path during phase transformations. A number of theoretical approaches have been
proposed in that field, see e.g. [l-4]. However, these approaches ecither treat
the uniform alloy case [l] which excludes from consideration most applications of
interest, or use various unclear approximations, e.g. extrapolation of linear Onsager
equations for weakly nonequilibrium states to the nonlinear region of states far
from equilibrium [2,3], which can result in significant errors [5-7).

Recently [5-7] we supposed to describe the nonequilibrium alloy kinetics using
the fundamental master equation for probability P to find the occupation number
set {n;} =a, for example, in the binary alloy A-B, where n; =nf =1 if atom A
is at site 7, and n; =0 otherwise:

dP(a)/dt = [W(e,B)P(B) ~ W(B,a)P(a)] = §P (1)
- .

while W{a,p) is the 8 — a transition probability.

Accepting for probabilities W in (1) the “thermally activated atomic exchange
model” [1,8,9], we can express the transfer matrix $ in (1) via the microscopic
inter-site jump probabilities wi; (see [9] for details),

wit = wis exp[—B(EL — Bi2)] = v exp(BELY). @

Here wy is the attempt frequency, B =1/T is the reciprocal temperature, Ej, is
the saddle point energy, v is the configurationally independent factor in the jump
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probability, and E';:',‘ is the initial (before jump) configurational energy of jumping
atoms. Let us write the total configurational Hamiltonian H as

1 1
H“Z‘P?n?+§z:vfjpn?n?+§ Z vfﬁ"n?n?nl+... (3)
a ia,jB TiouiBiky

where index «, 8 or ¥ corresponds to the A- or B-species atom, and quantities
@2 are possible external fields (which are present only if not all alloy sites are
equivalent). Then the operator Ei7 in (2) can be written as the formal variational
derivative of the hamiltonian (3)

EQR =6H/6n2 + 6H/6nd — 62 H/6nBénd = o8 + o — oD (4

where the third term corresponds to substraction of the "double-counted” interaction
between atom A at site ! and atom B at site k. Let us note that in terms of the
operators n; =n? (i.e. after eliminating operators n® =n!=1-n;) the Hamiltonian
(3) takes the form

H=vp+ Z pini + H™ = vy + Z‘Pini + Z vianiny + E Vit i + ... (5)
3 i i1 i>l>m

where vg, @i and v;_; are linearly expressed via ¢ and v]’;".

the pair interaction v;; we have

For example, for

vy = (vAA — 20AB 4 BB, 4 z(vann _ yBBA _ BAB | ,BAA) . L (6)
k
Let us now multiply eq. (1) by operators n;, n;n;, ...nin;...n; and sum

both sides of these relations over all number sets {n;}, i.e. over all configurational
states. Then we obtain the set of equations for averages < ninj...nx >= ¢i; &,
in particular, for the average occupation ¢; =< n; >=g;:

dg,'j'__k/dt = n;n;.. .nk.‘;' > (7)

where < (...) >=Tr{(...)P} means averaging over the distribution P, the solution
of eq. (1). Using egs. (1), (2) and the explicit expresssion for S, given in [9],
we can rewrite (7) as
d—g:i‘zt—k = Z < (nﬁn,*y;,epE::‘ - n’,n;'y,gepg:?)nj ceong > +{i— g, K}
s#i g, ki Ak
(8)

where {i — j,...k} denotes the sum of expressions obtained from the first term
of (8) by index permutation.

Since n; and n} =1-n,; are the projecton operators: n? = n;, (n!)? = nl,
nin; =0, the most general expression for the distribution function P{n;} in (1)
can be written as

P{n}=exp(+ ) Xini — Q) (9)
where the correlative, or "quasiinteraction” term Q is
Q=Y aymni+ Y agEmingme+ ... (10)
i>j i>j>k
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For what follows it is convenient to rewrite eqs. (8) in the form more
symmetrical with respect to permutation of indices i and s. To this end we make
following manipulations (used in [10,9]). We perform summation over all values of
n, (i.e. n, =0 and n, =1) in the first term of eq. (8), and similarly over all
values of operator n; in the second term. Then we formally restore summation
over n, in the first term introducing the projection operator n/ (since summation
over n, with this factor is equivalent to multiplying all the n,-dependent terms by
unity), and similarly restore summation over n; with the factor n] in the second
term. Then egs. (8) take the following symmetrical form

dgij x/dt= Y. %, <(expDi, — exp D) ninin;...nx > +{i — j,...k} (11)
s, i#j... 7k

where D;, = B(32 + 92 — 934) 4+ ), - Q,; Q,=68Q/6n, means the formal variational
derivative of the quasihamiltonian Q (10) over n,, analogous to that in eq. (4),
and we took into account the i — s symmetry of the configuration independent
factor v, in the jump probability. From the formal point of view relations (11)
provide a generalization of similar eqs. (7b) in [10] or (11) in [9] to a more
general case of the non-stationary substitution alloy (but for the ”closed” system,
in particular, in the absence of irradiation).

Let us divide operator D;, in egs. (l1) into parts D} and D being
symmetrical and antisymmetrical in indices i and s. To simplify formulas, let us
suppose the ”double-counted” term v2A in (11) to be symmetric in indices i and
s (as it is, for example, when interatomic interactions are purely pairwise ). Then
D;, in (11) is written as Dy, =D'7: + D7, where

D= 2B + %)+ (5 +5%), ~ BA + oM+ M) - (@ + @), (12a)

D= 387 = 90— (® — %)) - 5[~ M) - @ - @) (120)

Using expressions (4)-(6) for operators 4 and H we can rewrite expression
(12b) for D, in a more transparent form

- 1 in in
D=3 [ + Be,) — (X + Bei) + (Q: — BH™) - (Q, — BHI™)] (13)
where Hi™ =§H'"/6n; is the variational derivative of the interaction Hamiltonian
(5). Then kinetic equations (11) take the final form convenient for both general
discussions and approximate ireatments

d + f e g
g STk > E 7.-,<eD-"n£n; (eDi'—e Di-)nj...nk>+{z—-»1,...k}.
s, iZj..2k

14

The expression in round brackets in (14) has evidently meaning of the ”(gen?
eralized driving force” (GDF) that deterinines trends in the atomic distribution
evolution, while its prefactor plays role of the generalized mobility. To make
the expression for GDF more transparent, we can take into account that the
average value of fields ¢; in the Hamiltonian (5), $=Y;¢;/N, (where N, is the
total number of lattice sites), has no physical meaning, reducing to an unessential

6 [IMucema B XKIOTD, Tom 63, Boin. 5-6
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constant because of the atom number conservation. So we can put @ =0. Then
it is convenient to re-define parameters \; in (9), separating their mean value
A=3,)/N,, ie. using instead of A; the difference #; =X — X;. Then in egs.
(13), (14) for GDF the constant A cancels, while the stationary equilibrium form
of P(n;) (9) corresponds to the Gibbs distribution with 4; = Bp; and a;_; = fvi. ;.
The constant A determines the total particle number N =) .n; and has meaning
of the reduced chemical potential SBu.

Egs. (14) make it possible to define the ”nonequilibrium free energy” having a
fundamental property to not increase under spontaneous evolution of the system,
similarly to the Boltzmann’s not decreasing entropy. The derivation is similar to
that given in [5] in the mean-field approximation (MFA), but now it is exact. Let
us multiply eqs. (14) for dg;/dt =dc;/dt by (—d@;) =X + By and sum them over
i, eqs. (14) for dg,j/dt by (—ai;) = Pvij —a;; and sum them over all i > j, egs.
for gij..x by (—@j.x)=pvj. k—aij.x and sum them over all i>j>...>k, etc.
Then we sum all these equations. If we denote for brevity

bmi=exp{ Y @iy iniyeTin} (15)

33500,

then the resulting relation can be written as

dF/dt———Z<A.,n nl(1; — 10, )1ng-> (16)

Here II; = exp(—X; + Q; — By; — BH™) is the product of all £z IL =], émi =
§1:€2i ... €N, i, the positive quantity A;, is related to the operators Dit and II; as:
Ay =i, exp(D;'; (H;II,)':L, and the "generalised free energy” F is defined by the
differential relation

F-—E > @indgisin d</3H>+ZA dei— Y aixdgix. (17)

m=141>...D>%m D>...>k

Since summand in the ths of eq. (16) is not-negative {and is similar in its
form to that arising in proofs of the H-theorem for entropy), the relation (16)
shows that the quantity F has the fundamental property to not increase under
spontaneous evolution of the system.

To clarify the physical meaning of the free energy F we note that the
normalizing constant (2} for the distribution (9), or the ”generalised grand canonical
potential”

ﬂ=—ln'l‘rexp(Z Aini — Q), (18)
according to its definition (18) obeys the relations
30/3A; = —Cqy an/aa.-___,- =Gi.j- (19)

Thus the basic differential relation for 2 ("the first law of thermodynamics”) is

Zc,d,\ + > gijdai;- (20)

1507
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Therefore, if we define the thermodynamical potential F' via the Legendre’s trans-

formation of .
F=Q+Z/\,rc,- - Z ai..59...5, (21)
< i>..57

the first law of thermodynamics for it takes the form

dF =3 " Ndei— Y aijdgi s (22)

.57

Comparing eqs. (22) and (17)- we see that the free emergy F' is simply related
to the thermodynamic potential F (22):

F=F+ <BH >=Q+ Y (N-+Ppi)eit <BH™ - Q> . (23)

Using the generalised chemical potential A and the ”full” quasihamiltonian
Qs =Y ;¥ini + Q, we can also rewrite eq. (23) in a more transparent form

F=0+ )N +{<BH > - < Q; >). (24)

Egs. (16), (23), (24) show, .in particular, that in terms of the distribution
(9), its evolution to equilibrium is described by the following relations: A — g,
¥i — Pyi, ai.j — Pv;_;. The relaxation times 7 for the processes described by
ihese relations can be rather different. Usually they seem to obey the inequalities
7(A), 7(¥:) > 7(ai..;) [5-7], but these points need further studies.

Eqs. (14) can also be used for approximate approaches to the alloy kinetics
description. These approaches correspond to various approximations in calculations
of averages in the rhs of eqs. (14). The simplest approach is MFA that neglects all
intersite correlations, which also implies neglecting the interaction renormalizations
a;.j — Pvi..j. Therefore, in the MFA one considers evolution of only mean site

occupations < n; >=¢;, and eqs. (14) become the mean-field kinetic equations
(MFKE) discussed in [5-7]:

dei/dt =2 M, sinh [(3F/dc, — 8F/dc;)/2). (25)

Here F = F{c;} is the MFA expression for the free energy (23) presented in [3],
while M;, is the generalized mobility in the MFA : M;, = v,,{cicic,c], exp(Bu; +
Bu,)}/2, where ¢ =1-c;, u; =vA{c;}+v8{c;}, and vA{c;} or vB{c;} are obtained
from the operators #2{n;} or 92{n;} in eq. (4) by the substitution: n; — c;.

In spite of its relative simplicityy, MFKE in many cases is sufficient for
treatments of kinetic problems, and it was used for studies of a number of
interesting phenomena [2,5,6]. However, for some problems, e.g. those connected
with the LI, and Llp type orderings in the FCC lattice, MFA is known to be
insufficient. In treating equilibrium thermodynamics these difficulties stimulated
elaboration of more refined, cluster approximations, the known cluster variation
method (CVM) [11,12], and also its simplified version, the cluster field method
(CFM) [13]. Later CVM has been generalised to treat kinetics of uniform alloys
[1]. However, for nonuniform alloys, the kinetic cluster equations suggested so far
[4] seem to be not fully consistent, as their stationary solutions don’t turn into
the thermodynamic cluster results.
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Eqs. (14) are just suitable for the cluster treatments, particularly for the CFM
approach. The CFM corresponds to neglecting the interaction renormalization
effects within the clusters considered: in writing distributions of type (9) for
each of clusters one puts a;.; = PBvi.; [13]. Therefore, the CFM treatment
of kinetic problems should correspond to similar neglecting such renormalizations
due to kinetic effects, ie. putting a;.; = Bv;.; in eqs. (9), (14). Thus the
"cluster field kinetic equations” (CFKE) have the same form (25) as MFKE,
but both the free energy F{c;} and the mobility M;, = v, < nln’ expD] >
should be calculated using the CFM. The stationary solutions of these equations
correspond to the thermodynamical equilibrium conditions 8F/8c; = const, so the
solutions automatically agree with the thermodynamic results for same level of
approximations, unlike the equations suggested in [4]. )

Methods for the CFM calculations of both the operator products < n;...n; >
entering M, and the free energy F{c;} for inhomogeneous allloys have been
described earlier [13] and are simple enough. In particular, for the 2-cluster, or
"pair” approximation of CFM (coinciding with that of CVM) F{¢;} is calculated
analytically [13], thus kinetic calculations in this approximation should be as
feasible as those in MFA [5-7].

In the CVM, one should calculate some of renormalizations a;. ; — fBv;_;, as
well as the corresponding averages g;. ; [11,12]. The resulting kinetic equations for
¢i(t) and g;.;(t) can be derived similarly to CFKE. However, these equations look
cumbersome and don’t seem to be suitable for applications to nonuniform alloys.
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