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The friction force on the moving interface between two different vacuum
states of superfluid 3He is considered at low temperature. Since the dominating
mechanism of the friction is the Andreev reflection of the massless "relativistic”
fermions, which live on the A-phase side of the interface, the results are similar to
that for the perfectly reflecting mirror moving in the quantum vacuum.
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1. Introduction. The AB interface is the boundary between two different
superfluid vacua of *He. The dynamics of the interface is determined by the
fermionic quasiparticles (Bogoliubov excitations). In the A-phase vacuum the
fermions are chiral and massless, while in the B-phase vacuum they are massive.
At the temperature T well below the temperature T, of the superfluid transtition
the thermal fermions are present only in the A-phase. Close to the gap nodes, ie
at p = +ppl, the energy spectrum E(p) of the gapless A-phase fermions becomes
"relativistic” [1]:

E*(p) =g*(pi — e As)(pi — €Ayx), (1.1)

where the vector potential is A =ppl; e =:+; and the metiic teasor is
p
gk =c2 (6 - I fk) + «f:ﬁlﬁ"l’E . (1.2)

Here [ is unii vector in the direction of the gap nodes in the momentum space;
cL =A/pr and ¢ =vp (with ¢ € ¢||) are "speeds of light” propagating transverse
to [ and along icorrespondingly; pr is the Fermi momentum; vp =pp/m3 is the
Fermi velocity; mj is the mass of *He atom; A is the gap amplitude in 3He-A.

In the presence of superflow with the superfluid velocity v, the following term
is added to the energy E(p):

p v,=(p—eA)-v,+ehdo, Ao =ppf-v., . (1.3)

The second term corresponds to the scalar potential Ap of the electromagnetic
field, while the first one leads to the nonzero element g% =v} of the metric tensor
and to the change of the elements ¢** — gi¥ i ..o —viv¥. As a result the Eq.(1.1)
transforms to

9" (pu — eAu)(py —eA,) =0, (1.4)

with ¢%0=—1, p, =(p, E), 4, = (A, 4o).
Since the B-phase excitations are massive, the A-phase excitations cannot
propagate through the AB interface. Tle scattering of the A-phase fermions
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from the interface, which is known as Andreev reflection [2], is the dominating
mechanism of the friction force experienced by the moving AB interface. Due to
the relativistic character of the A-phase fermions the dynamics of the interface
becomes very similar to the motion of the perfectly reflecting mirror in relativistic
theories, which was heavily discussed in the relation to the Casimir effect (see
eg [3, 4]). So the investigation of the interface dynamics at T <« T. will give
the possiblitity of the modelling of the effects of quantum vacuum. On the other
hand, using the relativistic invariance one can easily calculate the forces on moving
interface from the A-phase heat bath in the Limit of low T or from the A-phase
vacuum at T'=0. This can be done for any velocity of wall with respect to the
superfluid vacuum and to the heat bath. We discuss here the velocities below the
»speed of light” in 3He-A. The case of the velocity exceeding c;, which is typical
for experiments made far from 7, [5], will be discussed later.

2. Force on moving wall at finite temperature: Massless isotropic
relativistic fermions. The motion of the AB interface in the so called ballistic
regime for the quasiparticles has been considered in [6-8] (see also [9]). In
this regime the force on the interface comes from the mirror reflection at the
interface (Andreev reflection) of the ballistically moving thermally distributed Fermi
particles. Three velocities are of importance in this process: superfluid velocity of
the condensate v,, normal velocity of the heat bath v, and the velocity of the
interface vy. The friction force is absent when the wall is stationary in the heat
bath frame, ie vy =v,.

Let us first consider the nonrealistic model in which the speed of ”light” is
isotropic, ie ¢y =¢j =c, and the vector potential A is absent. In the next Section
the results will be extrapolated to the real AB interface. In the reference frame
of the interface the system is stationary thus the energy of the quasiparticles in

this frame

E=E+(v,—vy)-p, E=cp, (2.1)
is conserved during the scattering. In thermal equilibrium their distribution function
is

!

f(p) = [l+exp{E '(V”T_v")'p}]_l= [1+exp{E_(v"T_ v')'p}]_l. (2.2)

In the ballistic regime one calculates the momentum transfer from the heat
bath to the wall due to scattering at the wall

F=)"A B 23
D: dp, p) . ( . )
P
Here
El
=ccosf -- (vp — v,) (2.4)

dp;
is the group velocity of the particles in the wall frame;

Ap, =2p “;’5_9 (;L("_Lv“‘)';'/)c/; (2.5)

is the momentum transfer after reflection, where @ is the angle between the particle
momentum p and the velocity of the wall vi. The momentum transfer Ap, is
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small compared to the cut-off parameter pp, which corresponds to the Andreev
reflection in condensed matter. The force per unit area is:
F(vrp — vs,vn — v,) Tx? TH _ UL = Uy — Y,

A =—hcwwa(uhun), ur A y Un c y

vz

1 (k= uz)?
a(ur, ty) = ——s dy el | 2.6

(1, un) l—ui/_x )t (26
Now we can consider several different cases.

2.1. vy Fv, = vn. In this most typical case the distribution function is the
Fermi function f(E)=1/(1+ e®/T), with E=cp. From Eq.(2.6) one has .

aun 0= —— [y gyt 2.7)
Ly I—'u% 1 ﬂ’ ,‘l’ uL 3 uL 31—‘U,L. -

The force disappears at vy — v, — —c¢, because the particles cannot reach the wall
moving with the speed of light. At vy =v, =v, the first term in the rhs of
Eq.(2.7) gives a conventional pressure P on the wall from the gas of particles,
F(vy =v, =v,)=—AP, where A is the area of the wall and

=% T*

P= ’:va"l'-s—('-)''-—-——'(hc)4 .

(2.8)

The second term, which is linear in vy — v,, is the friction force on the moving
wall if the wall moves with respect to the heat bath:

=2 T*

Firiction = — — )T y = — -
frict (vL v ) A T hc60 (hc)4

(2.9)
2.2. vp =v, ¥vn. The spectrum of the particles in the reference frame of the
wall is relativistic, E' = cp, while the distribution function is the Doppler shifted

Fermi function f(p)=1/[1 +exp{§’—+(%)—'2}]. From Eq.(2.6) one has

0 2
= _.._.__# _=l _'UL—U" -3
(0, u,) /_ldu =) 5(1 —)7%. (2.10)

For the small vy — v, € ¢ the results for the pressure and the friction force are
the same as in previous subsection. Difference occurs at higher velocity: when
v, — v, approach ¢ the vacuum becomes unstable.

2.3. vp=v, ¥v,. When the interface moves with the heat bath the force is
an even function of vy — v,:

1 (vr —v.)% .,
a(ug =un) = 3(1 - —=1)72 (2.11)
This means that the friction force is absent since the interface is in equilibrium
with the heat bath. The effect of the superflow v, — vy across the interface leads
to the relativistic renormalization of the temperature in the expression for the
pressure:
T v?
=]- -2 2.12
v/ 900 » 900 c?’ ( )

Terective =
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where the superfluid velocity is in the reference frame of the wall and heat bath.
This is in agreement with the Unruh analogy in which the superfluid velocity
plays the part of the gravitational potential [10].

3. Yorce on moving AB interface at low T. Now let us apply the
obtained results to the A-phase, which has an anisotropic velocity of light and
also contains the vector potential A=ppi. The constant vector potential can be
gauged away by shifting the momentum. If p is counted from eA the situation is
the same as in previous Section with one exception: the Doppler shift leads also
to the appearance of the scalar potential: Ao = A -v. In the reference frame of
the interface the energy of the quasiparticles becomes

E'=E+(v,—vy)-p+eldo, E=+/g*pipx, Ao=A-(v,-vyL). (3.1

Since the scalar potential Ao = const, it does not influence the scattering of
the quasiparticles at the wall. The scalar potential can influence only the thermal
distribution function. But this does not happen in two cases: (i) when vy ¥ v, =v,:
in this case the scalar potential arising from v, is compensated by the contribution
from v, and (i) if [ is perpendicular to the flow the potential Ag=0. In both
cases one has again the thermal distribution function f(E)=1/(1 + ¥/T).

3.1. vy Fv,=v,. For the most symmetric solutions for the interface structure
the anisotropy vector [ is either parallel or perpendicular to the normal # to the
wall (see Sections 3.14-15 in [I]). In both cases the result for the force on the
interface can be obtained from the result in previous subsection by the rescaling
of the momenta. Thus for vy ¥ v, =v, one has

722 T* 1 vy 493 g

KA Y L R S 3.2
60 h4vpci [3 + vp 31)%- ‘Up-—vL]' ( a)

F(vL)i||ﬁ = Ah

zl'i T [l vy 492 ¢y
60 h‘"Fcz.L 3 ¢ 3c1 cy1 - v

F(vp)p . =—Ah ]. (3.2b)
Here vy is the velocity of the interface with respect to the heat bath.

In both cases the value of the pressure is the same, while the parameter T’
in the friction force is essentially different. The friction force for the case || #
coincides with that obtained by Kopnin in Ref.[7]. For [ L # the friction force is
larger by the factor ¢|/cy ~ Er/A. For these two directions the the pressure P
and the friction parameter I' can be written in the general form:

=% T* =2 T4 ;
Pehigoas(-0M?, T=hgea(-g) 2 (gtmm)t. (33)
Here g, -(g;k,goo=—l) is the metric tensor of the stationary A-phase with g“‘
from Eq.(1.2); ¢ =—1/(vic}) is the determinant of the metric tensor.

3.2 vp =v, ¥, , [ L A. Since the interface is stationary in the heat bath
frame the friction force is absent. Taking into account that for [ 1 # the scalar
potential Ay =0 one obtains that the scattering of the fermions from the interface
only to renormalizes the pressure:

x T 1/2 Tx? T vi -2
ST Egz(“g) = — (1 - —) ' (3.4)

P= m
180K3 wvrc?
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where v, is the superfiuid velocity in the heat bath frame.

4. Casimir force on vibrating interface, T =0. Let us now consider the
friction force which arises when the AB interface is oscillating at T =0. This
corresponds to the dissipative Casimir force acting on the reflecting mirror in the
form of the flat infinite plane, which oscillates in the electromagnetic vacuum along
the normal to the plane. Such oscillations with frequency w lead to the friction
parameter [3]

1 wt

et (4.1)

The dissipative Casimir force can arise also if the motion occurs along the plane:
for the case of relative motion of two planes such force has been calculated in
Ref.[l1]. In superfluid 3He this geometry corresponds to the A-phase vacuum
between two flat boundaries moving with different velocities.

In the case of the reflecting AB interface oscillating in “relativistic” fermionic
vacuum the result should be similar to Eq.(4.1). Vibrations of the interface lead
to the production of pairs of fermions (see Refs.[6, 8]) and the friction force
can be estimated by extrapolation of the results in Egs.(3.2) for T ¥ 0 if one
substitutes T ~ hw /7 [0, 8]. Let us find an exact expression for the force using
again the covariance of the fermionic spectrum of the A-phase.

The motion of the interface with alternating velocity leads to the time depen-
dence of the scalar potential A¢ in Eq.(1.3):

Ao(t)=prl-v, (1), (4.2)

==

where v,(t) is the superfluid velocity in the reference frame of the vibrating
interface. This however has no effect since such time dependence can be gauged
away, le compensated by the gauge transformation of the phase of the wave
function: ¢(t) — ¢(t) + ef' dt’ Ao(t'). _

The effect of the alternating velocity v, comes from the time dependence of
the metric tensor

gt =vi(t),  9(t) = Ghkationary — Vi (10 (1), (4.3)

with ¢%(t)p; =p-v,(t). If p, is a good quantum number, then for each p, the
time dependence can be compensated by the gauge transformation, but due to the
wall the momentum p, is not conserved and this leads to mixing of states and
finally to the production of the pair of fermions. If the motion of the wall is
periodic, v,(t) =Zv,e"***, the term p-v,{t) corresponds also to the action of the
electromagnetic field with the finite frequency « but with gero wave vector. This
field provides the matrix element M = p,v, for the ”photon” absorption. This
allows the annihilation of two particles, when they move to the wall. The energy
of the fermions is E(pi) + E(p2) =w; their transverse momenta are opposite due
to conservation of the momentum along the wall, p;; = —p31; the deficite of the
momentum along the normal 7 to the wall, p;, + p2; ¥ 0, is absorbed by the
wall. The inverse process corresponds to ithe production of fermion pair from the
vacuum in the presence of the reflecting wall.
Let us consider first the case of isotropic fermions. The energy loss per unit
time due to the pair creation is
I‘Uv: =
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- dz ] d; 21 d 22 M1 2 Mzz 8E1 aEz .

==4w/ (2:)2' 2p7" / 5‘” 21(' wzl + l w’l Op:1 Op.2 6(w - E(pl) B E(pz)).
(4.4)

Hete Mis = p1a-V,; the factor 4 takes into account 2 spin species and two

values of the "electric charge” e=+1; 8E/dp, is the group velocity of the particle

moving towards the wall. Integration gives

1 wt

T=hspmra

(4.5)
Extrapolating to the case of the anispotropic fermions in the A-phase one obtains
the friction parameter

) I 1wt

To.=ho— o T . = o
s 72,2 iLa 3 3
I 30x2 viet 3072 vpc}

(4.6)
In the case of the moving AB-interface this effect can be observable since the
velocities of "light” are small.

The relativistic description of the fermions in the A-phase of 3He allows us
to obtain easily many different results for the dynamics of the AB interface in
the low temperature limit. On the other hand there is one to one correspondence
between the motion of the interface and the Casimir effect for the objects moving
in quantum relativistic vacuum, which will alow to model this effect in the
experiments with the AB interface.

The next steps are (i) to extend calculations to the case of arbitrary angle
between the normal of the interface and the orientation of the anisotropy vector {;
(ii) to find what happens when the velocity of the interface exceeds the smallest
of the "speeds of light”. This is interesting especially at T =0, where some kind
of Hawking radiation effect should arise due to analogy between the superfluid
velocity and the gravity field.
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