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A new form of the nuclear energy-density functional for describing the ground state
properties of finite nuclei up to the drip lines and beyond is proposed. The volume part in
this functional fits the Friedman — Pandharipande and Wiringa - Fiks — Fabrocini equation
of sate, for the UV14 plus TNI model up to the densities p &~ 1 fm—3, by a fractional
expression in p which can be extended to higher densities preserving causality. For
inhomogeneous systems, a surface energy-density term is added, with two free parameters,
which also has a fractional form like the Padé approximant containing (Vp)? both in the
numerator and in the denominator. In addition to the Coulomb direct and exchange
interaction energy, an effective p-dependent Coulomb-nuclear correlation term is included
with one more free parameter. A three-parameter fit to the masses and radii of real nuclei
shows that the latter term gives contribution of the same order of magnitude as the Nolen
— Schiffer anomaly in Coulomb displacement energy. The first self-consistent run with
the suggested functional, performed for about 100 spherical nuclei, has given the rms
deviations from the experiment of & 1.2 MeV in masses and ~ 0.01 fm in radii, which
is about a factor of two better than those obtained with the Skyrme functionals or with
the Gogny force. The extrapolation to the drip lines goes in between the ETFSI and the
macroscopic-microscopic model predictions.

PACS: 21.10.Dr, 21.65.4+f

Recent progress in measuring the basic nuclear properties such as nuclear mases and
radii as well as the increase in accumulating nuclear data is very impressive. Physics with
radioactive beams has opened new era in experimental studies of nuclei not too far from
the beta stability valley and of nuclear exotica at extreme N/Z ratios up to the drip lines
and beyond. From theoretical side, unfortunately, the present-day microscopic approaches
are not able either to describe the properties of already known nuclei with sufficient
accuracy to meet modern experiments or to give reliable predictions for nuclear terra
incognita and, specifically, for the data needed for the astrophysical applications which are
not expected to be measured in the nearest future. Among existing approaches, the most
successful are the self-consistent mean-field microscopic models based on the effective
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energy-density functionals (EDF) incorporating forces of Skyrme type with zero range or
of Gogny type with finite range, and also the relativistic mean field (RMF) model with
classical meson fields. These models can give the masses and radii of measured nuclei
with the respective rms deviations of no better than about 2 MeV and 0.02 fm from
experiment [1]. They may differ in the extrapolation behavior [2] but, most importantly,
all their predictions, already for nuclei not too far from stability, are in striking deviation
from those of the macroscopic-microscopic (MM) models [3] or of the extended Tomas
— Fermi model with Strutinsky integral (ETFSI) [4]. These latter models are able to
reproduce the measured nuclear masses and charge radii with the rms error down to
~ 0.6 MeV and = 0.02 fm, respectively, and their predictions are currently considered
to be the most reliable. Such a large disagreement between the two approaches may
indicate that some important physical ingredients are missing in the EDF construction,
and perhaps the form of the EDF used so far in the microscopic calculations is not
flexible enough to effectively incorporate them. Searches for a better parameter set for
these “old” functionals are still continuing (see, e.g., a very recent paper [5] where the
Skyrme functionals are revisited with respect to the isovector o (N — Z)? component but
it is hard to believe that this revision would cure the above disagreement).

In suggesting a new EDF, two issues should be kept in mind. Firstly, in changing
the conventional EDF form, in an attempt to improve the description of nuclear masses
and radii, it is highly desirable to reach a mutually consistent result: the relative error
for both these quantities should be of the same order. As one may notice, this is not
the case with all available calculations since they yield relative rms deviations for radii
that are a factor of 4 worse than those for binding energies. Secondly, it would be of
great advantange if a new EDF could be used not only for nuclei throughout the nuclear
chart but also for describing such objects as neutron stars, with the crystal structure in
their crust. The present paper is an attempt towards such a universal nuclear density
functional.

The total energy density of a nuclear system is represented as

€ = Ekin + Ev + €4 + ECoul + Eal + Eanomal » (1)

where &4y, is the kinetic energy term which, since we are constructing a Kohn-Sham type
functional, is taken with the free operator t = p?/2m, i.e. with the effective mass m* = m;
all the other terms are discussed below.
The volume term in (1) is chosen to be in the form
1-hi 2% ,

2, v s 1-hizy ,
v = 3erPo ["+ Tvhy, s+ T hay )"

(2
Here and in the following z+ = (pn % pp)/2p0, Pn(p) is the neutron(proton) density, 2po
is the equilibrium density of symmetric nuclear matter with £% = (97/8)*/32 /2ms3, the
Fermi energy and ro = (3mpo/8)'/3, the radius parameter. The fractional expressions of
the type of eq. (2) were introduced in [6] for the EDF with application to finite systems
with pairing correlations. Such expressions allow an extrapolation of nuclear equation
of state (EOS) to very high densities while preserving causal behavior. This might be
of advantage since the available microscopic nuclear matter EOS often violate causality
at p > 1 fm~3. Thus, in deriving the parameters of eq. (2), we shall use the EOS of
refs. [7, 8] only in the region of up to about six times the saturation density.
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The four parameters in the isoscalar volume energy density oc af are fixed by fitting
to the EOS of symmetric infinite nuclear matter [7, 8] for the UV14 plus TNI model. The
result shown in fig. 1 by the lower solid curve is obtained with the exponent o = 1/3,
the compression modulus Ky = 220 MeV, the equilibrium density 2p, = 0.16 fm—3
(ro = 1.143 fin) and the chemical potential u = —16.0 MeV (the energy per nucleon at
saturation point). The dimensionless parametres are a% = —9.559, hy, = 0.633, h}, =
0.131. Keeping them fixed, a fit to the neutron matter EQS from the same papers {7, 8]
is performed to determine the three parameters of the isovector part < a¥ in eq.( 1).
Good description presented in fig. 1 by the upper solid curve is obtained with a¥ =
4.428, hY_ = 0.250, h_ = 1.300. This corresponds to the asymmetry energy coeflicient
Bo = 30.0 MeV. Note that, according to our fit, the asymmetry energy decreases with
p, changing sign at four times saturation density. Such a behavior might lead to the
neutron-proton separation instability in dense matter [9].

The surface part in eq. (1) is meant to describe the finite-range and nonlocal in-
medium effects which, phenomenologically, may presumably be incorporated within the
EDF framework in a localized form by introducing a dependence on density gradients. It
is taken as follows:

2 o
€s = §EFP0

a4y r3(Vzy)? 3)
1+ h%ad + heri(Vzy )2’

with h% = h3., a} and h§, the two free parameters. Such a form is obtained by adding
the terms ox (V4 )? both in the numerator and in the denominator of the isoscalar volume
energy density of eq. (2). Alternatively, this peculiar surface term may be regarded as
the Padé approximant for the (unknown) expansion in (Vp)?/(1 + A% z) where the
form factor 1/(1 + hj z%) imitates a transformation to the Migdal’s quasiparticles (cf.
ref. [10]). In fact, k% is also a free parameter but here we prefer to keep it fixed by the
above condition.

The Coulomb part in eq. (1) is approximated by

1 1 o0 3 3
€cout = 2me? pen(r) (; / Pen(r)r® dr + / pen(r)r d") - Z(;)I/ 3¢ pp/* (1~ hoowe?) ,
0 r
(4)

1R2



Fig.2. Representative diagrams that can con-
tribute to the Coulomb-induced binding energy.

Diagrams a and b correspond to direct and ex-

change Coulomb term, respectively, whereas dia-
gram c¢ shows Coulomb-nuclear correlation term.

The solid lines represent the nucleon (proton)
a b c

Green’s function, dashed lines the Coulomb inter-
action, the black square the total amplitude of NN
(proton-proton) interaction

where the first term, diagram fig. 2a, is the direct Coulomb contribution (expressed
through charge density p.; and written, for simplicity, for the case of the spherical sym-
metry), while the second term is the exchange part, fig. 2b, taken in the Slater approx-
imation and combined with the Coulomb-nuclear correlation term o heooy, fig. 2c. The
latter is believed to account for the correlated motion of protons in nuclei beyond the
direct (Hartree) and exchange (Fock) Coulomb interaction [11, 12].

The spin—orbit term €, in eq. (1) comes from the two-body spin-orbit interaction
o (k+ K'T1 - T2)[V1d(ry — r2) X (P1 — P2)} - (61 + 02). For spherical nuclei one gets

k
o=ty 3 Lt .
t,k=n,p
where p,; is the spin-orbit density, p5P(r) = Y, na{o - Da | pVP(r) |* with ny the
occupation number of the single-particle level A, ¢, its wave function, (o - 1)y = j(j+
+1) =11 +1) = 3/4, k™ = kPP = Kk + k', K"P = kP" = k — &', and Cp = 2¢%/3pp the
inverse density of states on the Fermi surface (Cp = 307.2 MeV-fm~3). It is known from
the RMF theory that the isovector spin-orbit force is very small compared to the isoscalar
one {13]. Thus we set &' = 0 and derive the isoscalar strength £ = 0.19 from the average

description of the splitting of the single-particle states in 2°8Pb.
The last term in eq. (1), the anomalous energy density, is represented as

Eanomal = Z COVﬁ(r)fé(x+(r))Vi(r) ) (6)

£=n'p

where v(r) is the anomalous density and Cj f* is the effective force in the particle-particle
channel with the dimensionless formfactor [12} f¢ $z+) = f&, +hEzy + f$r3(Vzy)?. The
strength parameters f¢, = ~2.8, h* = 2.8 and fv = 2.2 are extracted from a fit to the
neutron separation energies and charge radii of lead isotopes [12].

The three parameters af , hy; and hcow remain to be defined. This was done through
a x? fit to the masses and radii of about 100 spherical nuclei from *¥Ca to 22°Th with the
result o} = 0.600, hy; = 0.440 and hoow = 0.941, the rms deviations being 1.2 MeV and
0.01 fm for masses and radii, respectively. We shall call the EDF in the suggested form,
with the just extracted parameters, the Nuclear Density Functional FaNDF? (superscript
0 means a “zero” approximation in the sense that other parameter sets, FaNDF?, i = 2,
3,..., might be found leading to a better fit).

Typical results of the spherical HF+BCS calculations with FANDF? are shown in fig. 3
for even Pb isotapes, from the proton drip line to the neutron drip line (47 nuclides), in
comparison with experimental data and other model predictions. The ETFSI model
is chosen as a reference. The nuclei in the A ~ 222 to 248 region might have a static
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deformation [3, 4], so one expects that, with deformed code, the results for FANDF® in this
region will be shifted down closer to the MM or ETFSI results. Analogous calculations
for tin isotopes are presented in fig. 4. It is seen that the predictions obtained with
the Gogny force just outside the measured regions are in strong disagreement with other
models. Approaching the neutron drip line, the masses obtained with FaNDF? fall in
between the MM and ETFSI predictions.
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Finally, the mass differences for the mirror nuclei !"F-170 and 4!Sc-#!Ca calculated
with FaNDF? in the uniform filling approximation are 3.546 MeV and 7.174 MeV, respec-
tively, whereas the corresponding experimental values are 3.543 MeV and 7.278 MeV. In
all calculations the nucleon charge form factors in the direct Coulomb term and neutron-
proton mass difference in the free kinetic energy operator are always taken into account.
Omitting the Coulomb-nuclear correlation term by setting hcour = 0, the calculated mass
differences for these mirror pairs would be respectively 3.300 MeV and 6.872 MeV leading
to a 6-7% discrepancy; this kind of discrepancy is known as the Nolen-Schiffer anomaly.
It follows that Coulomb-nuclear correlations play an important role in finite nuclei. Incor-
porating the corresponding term in the EDF improves the description of nuclear ground
state properties and greatly reduces the severity of the Nolen-Schiffer anomaly.
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To summarize, we have shown that the agreement between microscopic self-consistent
theory and experiment is significantly improved with the proposed EDF in which the
volume part fits the microscopic EOS for infinite uniform matter, the surface term has a
peculiar form as given by eq. (3) and, for finite systems, the Coulomb part contains an
additional Coulomb-nuclear correlation term. The first resuts obtained with the FaANDF?
parametrization are encouraging. The proposed construction of the EDF seems to be an
important step towards a universal nuclear density functional.
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