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We consider a topologically trivial field theory defined in a large box of size L and
exploit the enumeration of states to point out that the vacuum charge is integral contrary
to what a commmonly used formula seems to suggest. We show that the large L limit is
subtle: Standard anticommutation relations require the presence of a somewhat unfamiliar
normalization factor which in turn leads to observable effects for the vacuum charge
density.

PACS: 03.70.+k, 11.10.St

Introduction. In this note we consider the continuum limit of a field theory defined
in a-large box of size L. In the limit L — oo, all discrete states apart from bound
states become continuum states. According to most textbooks, quantum field theory
is supposed to be well understood in this limit. We show, however, that the limiting
procedure is subtle and unless proper care is exercized the usual prescriptions may give
incorrect results. In particular, we show an example where the charge of the system seems
to be a continuous function of the background field whereas it should be integer-valued.

An example which we have discussed in previous papers (which are referred to as
CDI [1} and CD2 [2]) is provided by the second quantized Dirac theory in the presence of
a one dimensional four-vector potential vanishing at spatial infinity. The usual limiting
procedure for counting states in the continuum limit is given by

Z(states) - %/oo dk (L + 3——:) (1)
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where (k) is the scattering phase shift for a particle of momentum k in that limit. Yet
as we (and many others) have argued the vacuum charge @ of the system defined in the
normal way by the spectral asymmetry

Qo = -;- {Xk:(states with E > 0) — zk:(states with E < 0)} (2)

which is obviously integer-valued in a box of finite size L is given in the continuum limit
using Eq. (1) by

1(1
Q0= 3 { 3 51 (00) = 810) = 6-(o0) +-(0) + Ny - N} ©
where + and — refer to electron and positron scattering phase shifts and Ny and N_
are the number of positive and negative energy bound states. Since in one-dimension (see

cDI) _
51(c0) = % f V(2)dz

this implies for the potential V' (z) = Ad(z) that Q¢ = A/7 which is a continuous function
of A. The correct result is calculated using Eq. (2) in CD2 to be

A1

Qo = Int [; + 5] (4)
where Int denotes integral part of, which is obviously an integer. The erroneous result
of Eq. (3) for the vacuum charge for this model is found in many places besides CDI, for
example in Refs. [3] and [4]. The same error may also be responsible for similar results
where other quantised quantities such as baryon charge or angular momentum seem to
be given non-quantised values [5, 6] for no apparent reason. It is interesting that in the
same context an explicit counting argument gives quantized values as expected [6].

In CDI following Barton (7] we counted states and showed that the number of both
positive and negative energy states is unchanged when a potential is switched on from
zero Thus the vacuum charge is still zero in the presence of a small potential: there is a
bound state but the number of continuum states has decreased by one. As the potential
increases in strength Qg changes by one according to Eq. (2) whenever a state crosses
E = 0. So why is the erroneous result obtained and how can it be avoided? We now turn
to these points.

In order to quantize the model consistently with standard anticommutation relations
it is essential that eigenfunctions be normalised to unity. We shall see that to ensure
correct normalisation we have to include an unfamiliar normalisation factor N which
reduces to unity as L — co; in fact N2 = 1+ O(1/L). It turns out that the expression
for N? involves the phase shifts in a way reminiscent of the incorrect result of Eq. (3).
We obtain a new expression for the charge density differing from the conventional one by
terms of order ~ 1/L. We find a finite change in the vacuum charge (defined as the space
integral of the vacuum charge density) induced by the spectral asymmetry residing in a
certain region of space of the system. It is crucial to get this 1/L behaviour correct if we
wish to sum over states and convert sums to integrals via

Z—)%fomdk (5)
k
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There are topologically nontrivial models where the Dirac particle is coupled to a soliton;
the attending zero modes induce non-integer values for the vacuum charge [8]. However
in problems with trivial topology such as ours Q) is integral. '
1. The Normal Modes. The potential V(z) is symmetric and is taken to vanish
for |z| > a. We take the system in a box of length 2L with periodic boundary conditions
¥(—L) = ¢(L). Wavefunctions are classified according to the magnitude of the wavevector
outside the well and parity. Positive energy solutions outside the potential take the form

( cos(kz + A.4) \
0

Neyp(k) [E+m
ue,k(z) = ‘-/’-'é’ ) 2E

sin(kz &= A.4) ()
0 /
isin(kz + Aoy.) \
Noy(k) [E+m 0

Uok(2) = k 7
ok(2) VL 2B | o cos(kz Aoy) @
\ 0 /
The subscript + in the phase shifts A refers to the energy sign. Similar expressions
are valid for negative energy states v , vo,x provided we replace E by |E| and change

notation from Ay, Aoy, Net(k), Nop(k) to Ao, Ap_y Ne_(k), No— (k). We also quote
for future reference the form of the even bound state wavefunction outside the well

ik
E+m

1
0
up(|z| >a) =C im_Eb e "k =/m? - B} (8)
K
0
We insist on the normalization
L
[ sl =1 9)

for all eigenstates of the Hamiltonian. For the bound state the appropriate value of C to
ensure correct normalization depends on the detailed behaviour of the potential.

The Landau-Lifshitz-Stone lemma. We rederive a result originally due to Stone (9]
which itself is based on a problem in Landau and Lifshitz [10). We start with the Dirac
equation; the argument is equally valid for either positive or negative energy solutions,

thus E; = +/k? + m?

%a,% +mpPup = Epup + V(2)up (10)

and left-multiply by u} |
%ula,%'— + mu,tﬂuk' = Ep u{uy + V(z)u}:uk: (11)
Write the Dirac equation for u;, take the Hermitian conjugate and right-multiply by us
—%%a,uk: + mu}:ﬂukr = Eku{uy + V(z)uluk: (12)
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Subtract (12) from (11) to get

1
;Zz_ (ulazuk:) = (Ekr - Ek) ul’uk' (13)

Integrating over z from z;to z3:
1 %3 %3
3 [ula,uk:] = (Ep —Ek)/ u;“uk:dz (14)
zZ1 21

Take k' = k + dk in the above equation and divide by dk:

1[t duk]"_dE =

< |upo——] = —-
i (%K), Tk,

Z2 22
u;‘,ukdz or % [ulaz%] . = %/ﬁ ulukdz (15)
This is the key equation. Its power lies in the fact that to evaluate the left hand side for
|21}, J22] > a it suffices to use the asymptotic expressions Eqgs. (6, 7) for the wavefunctions
where only the phase shifts appear.

Normalization of eigenfunctions. Note that the normalisation condition (9) together
with periodic boundary conditions entail restrictions on k. Apply relation (15) at the
endpoints 23 = —L,2z2 = L. Then in the left hand side we only need the asymptotic
expressions Eqgs. (6, 7) and on the right hand side we can use Eq.(9) to set the integral
equal to unity. The evaluation of the left hand side simplifies because of the periodic
boundary conditions. We thus obtain

1

N, k) = —mee—— 16
e,O:I:( ) m }_dAe,oi ( )
L dk
and therefore 1 1 dA
2 _—— = 1o 2880t
Mool = —am_+ =1-7—a thy
L dk

for L large. Note that the quantities N2, (k) — 1 vanish both when V = 0 and in the
limit L — oco. Eq. (16) is the main result of this note.
2. The Vacuum Charge Density. We focus on the charge density

pi(2) = 1 (2)¥(2) (18)

of an eigenstate v (2) (of definite parity and sign of energy) corresponding to a particular
wavevector k. pi(z) can be written down for the scattering states for 2| > a by using the
asymptotic forms (6) and (7) of the wavefunctions. The charge density outside the well
in the case of a positive energy even parity wavefunction is given by

Pe+ (K, 2) = _21—L ( - %i%:i) . (1 + % cos(2kz + Ae.,.(k))) (19)
(even parity — negative energy and odd parity wavefunctions give similar expressions).
Eq.(19) consists of the expected 1/2L part, an oscillating part and a constant background
~(1/2L?)dA.+/dk. The latter is purely a consequence of the somewhat unfamiliar nor-
malization factor. Integration over k via Eq.(5) and subtraction of the analogous contri-
bution from negative energy states leads to an observable distortion of the vacuum charge
density.
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The charge Qg ¢ outside the well due to this state

Q= ([ +] °°) dennta) =2 [ dopu) (20)

since V is symmetric. To order 1/L

a 1dA..
Qr,ezt,even,t =1 — 7~ 2LEk 7o sin2(ka + Aex (k)) - E dk (21)

s, 1 dA,+
Qr,est,odd,+ =1 — ZLE,C =5y sin2 (ka + Ao:h(k)) T dk (22)

The charge of the bound state outSIde the well can be calculated from Eq. (8)
2m
—v2__ &Y ,—2Kka

Qbeet =C RETm)° (23)

In the absence of the potential the first two terms in Eqs. (21, 22) would still be there.
We wish to calculate Qo ¢z¢ defined as the part of Q¢ residing outside the well. (Since
Qy itself vanishes this charge is cancelled exactly by an opposite charge residing inside
the well.) We see that the continuum contribution to the vacuum charge outside the well
resulting from the last term in (21, 22) is given by

Qocet = 5= (84(00) = 84(0) = 6_(00) +5_(0)) (29

(where the phase shifts J refer as before[l] to the sum of the even and odd phase shifts),
an expression which is very similar to Eq. (3) and which will in general give non-integral
values for Qg .-:- To get the total continuum contribution we should integrate over the
terms that depend on the mass explicitly. The final result is in general non-integral since
there is no reason why the charge inside or outside a particular region of space should be
integer-valued.

Conclusion. We investigate a commonly used formula which seems to give non-
integral vacuum charge in the continuum limit. Enumeration of states establishes a one-
to-one correspondence between states for various values of the potential (including V' = 0)
thus ensuring that the vacuum charge is integer valued. We show that consistency with
standard anticommutation relations requires the presence of a somewhat unfamiliar nor-
malization factor which modifies the charge density pertaining to a particular wavevector
by a position-independent addend of order 1/L2. This term is sensitive to the violation
of charge conjugation by the potential and leads to observable effects upon summation
over all wavevectors. This is relevant to the calculation of the vacuum charge residing in
a certain region of space. The existence of this localized charge is due to the distortion
of the Dirac sea induced by the potential.
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