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Fermion condensation (FC) was studied within the density functional theory. FC can
fulfill the role of a boundary, separating the region of strongly interacting electron liquid
from the region of strongly correlated electron liquid. Consideration of the superconduc-
tivity in the presence of FC has shown that under certain circumstances, at temperatures
above T. the superconductivity vanishes, while the superconducting gap smoothly trans-
forms into a pseudogap. The pseudogap occupies only the part of the Fermi surface,
shrinking with increasing temperature and vanishing at T = T, while the single particle
excitations of the gapped area of the Fermi surface have the width v ~ (T — T¢).

PACS: 71.27+a, 74.20-z

Recently a powerful method was developed for measuring the electronic structure
close to the Fermi level [1]. As the result, a plateau adjacent to the Fermi level has been
observed in the electronic spectra of a number strongly correlated metals. Thus, it was
shown that optimally doped high temperature superconductors exhibit an anomalous nor-
mal state [1]. For instance, the spectra of SrRuQO4 or YBayCusO7_s5 (YBCO) contain
very smooth segments on the Fermi surface. It is a remarkable thing that these spectra
have not been reproduced in theoretical calculations [2]. It was shown that such peculiar-
ities of the electronic spectra can be understood within the framework of the theory of
fermion condensation (FC), which was predicted in [3] and associated with the rearrange-
ment of the single-particle degrees of freedom in strongly correlated Fermi systems. The
main feature of FC is the appearance of a plateau in the single-particle excitation spectrum
at the Fermi level [3-5]. On the other hand, the quite unusual behavior in underdoped
high temperature superconductors, which indicates a pseudogap above T, has been re-
vealed [6-9]. As we shall see such a behavior can be also clarified within a concept of the
fermion condensation.

It has been demonstrated that the onset of the density-wave instability in a Fermi
system can be preceded by the FC phase transition, thus, FC can take place if the effective
coupling constant is sufficiently strong [10]. This makes one think that FC is a rather
widespread phenomenon inherent in strongly correlated Fermi systems. For example, FC
can arise in such an unusual system as fermions locked in vortex cores in a superfluid
Fermi liquid {11]. On the other hand, it was demonstrated that the charge-density wave
instability takes place in three-dimensional [12] and two-dimensional electron liquid [13].
Thus, the electronic systems of some strongly correlated metals are suited for searching
for FC [14].

Now let us outline the key points of the FC theory [5, 15]. FC is related to a new class
of solutions of the Fermi-liquid-theory equation [16]
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for the quasiparticle distribution function n(p,T), depending on the momentum p and
temperature 7. Here F is the free energy, p is the chemical potential, while £(p, T} =
= 8 E/dn(p, T) is the quasiparticle energy, being a functional of n(p, T') just like the energy
E and the other thermodynamic functions. Eq. (1) is usually rewritten in the form of the
Fermi - Dirac distribution

o) = {1+ [T o

In homogeneous matter, the standard solution nr(p, T = 0) = @(pr — p), with pp being
the Fermi momentum, is obtained assuming that the effective mass,

1 de(p,T =0)
ok ——pd;——‘lzmpw (3)

is positive and finite at the Fermi momentum pr. As the result T-dependent corrections to
M?*, quasiparticle energy, and the other quantities start with T2-terms. But this solution
of eq. (1) is not the only one. There exist "anomalous” solutions [3, 11] of eq. (1)
associated with a so-called fermion condensation [3]. Being continuous within a region in
p, such a solution n(p) admits a finite limit for the logarithm in eq. (1) at T -+ 0, yielding

e(p) = 5n€,) =y, pi<p<ps (4)

Thus, within the region p; < p < py, the solution n(p) deviates from the Fermi step
function ny(p) in such a way that the energy =(p) stays constant while outside this region
n(p) coincides with ng(p). We see that the occupation numbers n(p) become variational
parameters: the solution n(p) emerges if the energy F is lowered by alteration of the
occupation numbers. New solutions, as it is seen from eq. (1), possess at low T the shape
of the spectrum &(p, T') linear in T [14]:

5(]), T) - “(T) ~T << Tf’ (5)

within the interval occupied by the fermion condensate. If T' << T it follows from egs.
(1), (5) that

M~ N(O) ~ 7, ®)
with N(0) being the density of states at the Fermi level. Here Ty is the quasi-FC phase
transition temperature above which FC effects become insignificant [15]. The quasipar-
ticle formalism is applicable to this problem since the damping of the condensate states
is small compared to their energy. Obviously, this condition holds for superfluid systems,
while for a normal system it is also true [15].

In this Letter basing on the density functional theory the influence of FC on the
superconducting phase transition is considered, including study of the pseudogap.

We start with a general consideration of the superconductivity in the presence of FC. In
the density functional theory of superconductivity, there exists a unique functional F(T)
of two densities, namely, the normal density of an electron system p and the anomalous
density . In atomic units, the functional F{p, «] is given by {17], “

Flpr] = Tulo, ] = T5ulp, )+ [ 528 o o,y 4 o -
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- /Fv*(rhrz)V(l‘h1‘2,1‘3,1‘4)f€(!‘3,r4)d3r1d31‘2d31‘3d31‘4 = E[p,k] = TS,[p,s]. (7)

Here T, [p, s] and S,[p, k] stand for the kinetic energy and the entropy of a noninteracting
system, while Fy.[p(r), k(r1,r2)] is the exchange-correlation free-energy functional, V is
a pairing interaction. The third and fifth terms on the r.h.s. of (7) are the Hartree terms
due to the Coulomb forces and the pairing interaction, respectively. We suppose V' to be
sufficiently weak like the model BCS-interaction [18]. The last equality in eq. (7) can be
considered as the definition of E. For the densities p and x one can employ quite general
forms,

pr) =Y (I6a(E1)Ponl> (1 = fa) + [6-n 1) Pluaf* ful; (8)

K(r1,m2) = 2 SIS ()6-a(E2) + B E)PnlE)liunll ~2),  (9)

with the coefficients v,, and u,,, obeying the conditions, |v,|? + |u,|*> = 1. Here n denotes
the quantum numbers such as the momentum p in the case of homogeneous matter or the
crystal momentum and the band index in the solid state. For the sake of simplicity, we
omit the spin variables. Since we are going to take a fresh look at eq. (4) we set T = 0.
Minimization of F' with respect to ¢, leads to the eigenfunction problem,

v? p(r2) B 3. _
(—T + F‘:I' I’g) Om(r1) + /Uzc(rlar2)¢m(r2)d r; = €m¢m(r1)1 (10)
1— T2

with v, being a nonlocal potential [19]. In the case of a homogeneous system the functions
¢m are plain waves, |vp|*> = n,, and eq. (10) reduces to p?/2 + v(p) = £(p). Taking
into account eq. (10), one can also infer that §E/S|v|2 = ¢;. If V were zero, ¢; would
represent the real single-particle excitation spectra of system. The energy ¢; is perturbed
by the BCS correlations, but, in fact, this perturbation is small. It is convenient to take
vy = cosby; u; = sin @, while minimization with respect 6; yields,

OF
—'[Ll’—n—] = (e; —p)tan26, + A; = 0. (11)
86,
The gap A, is given by,
_ §F(py, ] 3. 3
Al - JK,(I' r )¢l (r1)¢ (rZ)d rld ra. (12)

We shall now give further proof of eq. (4) deduced at 7' = 0. Consider eq. (11) in the
limit V' = 0. In this case, A; = 0, and eq. (11) can be written as

(€1 — pu)tan 26; = 0. (13)
Eq. (13) requires that,
-pn=0, if |y®#0,1. (14)

Therefore, the fermion condensation solution is a new solution of the old equations. On the
other hand, it is seen from eq. (14) that the standard Kohn-Sham scheme for the single
particle equations is no longer valid beyond the point of the FC phase transition, since
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the quasiparticle occupation numbers |v;|?> become variational parameters, minimizing the
total energy. In the homogeneous limit eq. (14) takes form of eq. (4).

FC is related to the unbounded growth of the density of states when T — 0, see eq. (6).
As the result, FC serves as a source for new phase transitions which lift the degeneracy
of the spectrum. We are going to analyze the situation when the superconductivity wins
the competition with the other phase transitions. Now let us switch on the interaction
V. Then, as it follows from egs. (7), (12), A ~ V, when V is sufficiently small [3, 15],
while in the BCS-case A, given by eq. (12), is exponentially small. Inserting the result
A ~V into eq. (7), one finds that the pairing correction  E,(T = 0) to the ground state
energy at T = 0, 0E,(T = 0) ~ A[15]. This result differs drastically from the ordinary
BCS result 6E, ~ AZ%. In response to this, an essential increase of the critical magnetic
field, destroying superconductivity, can be expected. Above the critical temperature the
system under consideration is in its anomalous normal state, eq. (5) is valid, and one can
observe the smooth segments of the spectra at the Fermi level [9].

Now we focus our attention on an investigation of the pseudogap which is formed
above T, in underdoped high temperature superconductors [6-9]. Let us consider a 2D
liquid on a simple square lattice which has a superconducting state with the d-wave
symmetry of the order parameter x. We assume that the long-range component Vi, (q) of
a particle-particle interaction I/];,p(q) is large and repulsive and has such a radius ¢;, that
pr/qir ~ 1. The short-range component V,,.(q) is relatively small and attractive, with its
radius pr/qsr >> 1 [20]. As the result, the low temperature gap A in agreement with
d-symmetry is given by [20, 21],

A(9) = Ay cos2¢ = Ay (2? — ?), (15)

with A; being the maximal gap. At finite temperatures eq. (12) for the gap can be
written as,

2r
AE0) =~ [ Vinlps 01,80l 60 ton DO DI

with p being the absolute value of the momentum, while ¢ is the angle. It is also suggested
that FC arises near the van Hove singularities and the different areas of FC overlap slightly
[14]. Because of the chosen interaction Vpp, and then from eq. (15) it follows that A is to
change sign,

™ T
Al +¢) = _A(Z - ¢), | (17)
vanishing at /4. Thus, A can be expanded in Taylor series around n/4,p ~ pr:
A(p,8) = ab — b6, (18)

with @ being counted from w/4. Hereafter we shall consider the solutions of eq. (16)
on the interval 0 < @ < w/4 . Recast eq. (16), setting p ~ pp and separating out the
contribution I;, which comes from Vj,, while the contribution related to V,, is denoted
by I,,. At small angles the contribution I, can be approximated by I, = 84 + 63B.
The quantities A and B are independent of T if T < T* << Ty since they are defined by
the integral running over the regions occupied by FC. This finding is consistent with the
experimental results which show that A; is essentially T-independent [9]. Thus, one has
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for A,

2r
AO =L +Te=— [ Virl00, 0o, 0 tanh ZROPRR g4 o (19)
o ™
In eq. (19) the variable p was omitted. It is seen from eq. (19) that the function of
FC is to produce the free term 6A + 6*B. We shall show that at T > T, the solution
of eq. (19) has the second node at 6.(T') in the vicinity of the first node /4. To show
it let us simplify eq. (19) to an algebraic equation. The quantity I,, ~ (Vo/T)0 since
tanh(E/2T) ~ E/2T if T =~ T,, while V5 ~ V,, is a constant. Upon dividing both part
of eq. (19) on (@), one gets,

B(O) = (2 - 4 - By, (20)

with A;, B; being new constants. The quantity A, is negative and it is inferred from the
condition that eq. (16) has the only solution A = 0 when V,, = 0, while B, is positive.
The factor in brackets on the r.h.s. of eq. (20) changes its sign at some temperature
T = T, = Vo/A;, on the other hand, the excitation energy must be E(8) > 0, as the result
the gap has to reverse its sign on the interval [0 < 8 < 6;], with A(6;) = A(0) = 0. It
is seen from eq. (20) that the angle 0. is related to T > T, by the equation,

Vo

TR ———F
(A1 + B19?)

(21)
Our estimations of the maximal gap Ay in the range Q show that Ag ~ 1073A;. Thus we
can conclude that the gap in the range € can be destroyed by strong antiferromagnetic
correlations which exists in underdoped superconductors [22, 23]. Then, it is believed
that impurities can easily destroy A in the considered area. Now one can conclude from
eq. (20) that T, is the temperature when the superconductivity vanishes, while the gap,
which is also referred to as a pseudogap, persists outside the region. It is seen from
eq. (21) that 6, ~ /(T — T.)/T., thus one can expect that the pseudogap dies out as a
temperature I'* is approached.

Now consider the quasiparticle excitations at the Fermi level. At temperatures T < T,
they are typical excitations of the superconducting state. At T > T, in the range Q we
have normal quasiparticle excitations with a width 4. The other part of the Fermi level
is occupied by the BCS like excitations with the finite energy of excitation, given by
the gap A(¢), while both type of the excitations have the widths of the same order of
magnitude. Let us estimate . If the entire Fermi level were occupied by the normal
state the width would be equal, ¥ ~ N(0)3T2/a?, with the density of states N(0) ~ 1/T,
and the dielectric constant & ~ N(0). Thus one has, v ~ T [15]. But in our case
only part of the Fermi level within 2 belongs to the normal excitations. Therefore, the
number of states allowed for quasiparticles and for quasiholes are proportional to 6.,
and thus the factor T2 is replaced by T262. Having regard to these factors, one gets,
v ~ 62T ~ T(T — T.)/T. ~ (T — T.) since we consider only small angles. Here we have
omitted the small contribution coming from the BCS like excitations, that is why the
width « vanishes at T' = T,. Thus, we can conclude that above T, the superconducting
gap smoothly transforms into the pseudogap. The excitations of the gapped area of the
Fermi surface have the same width v ~ (T'—T.), and the region occupied by the pseudogap
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is shrinking with increasing temperature. These results are in good agreement with the
experimental facts [6-9).

A few remarks are in order at this point. Basing on the previous consideration, we
can conclude that BCS-type approach is fruitful for consideration of underdoped samples.
It is worth noting that A, scales with T* rather then with T; [7], since T"* defines the
existence of non-trivial solutions of eq. (16), while T, is related to the emergence of the
new nodes of the gap. Then, the peak was observed in inelastic neutron scattering from
single crystals of optimally doped YBCO and of underdoped samples, at temperatures
below T, while the broad maximum above T, exists in underdoped samples {21]. The
explanation of this peak, based on the ideas of the BCS theory, was given in [24]. One can
recognize that the same explanation holds for the broad maximum in underdoped samples
above T..

In summary, we have considered FC within the density functional theory. The FC
phase transition manifests itself when the effective coupling constant is sufficiently large.
FC can fulfill the role of a boundary, separating the region of strongly interacting electron
liquid from the region of strongly correlated electron liquid. We have also considered the
superconductivity in the presence of FC. As the result, we were led to the conclusion that
under certain circumstances, at temperatures above 7, the superconducting gap smoothly
transforms into a pseudogap. The pseudogap occupies only the part of the Fermi surface,
shrinking with increasing temperature and vanishing at T = T™*, while the single particle
excitations of the gapped area of the Fermi surface have the width v ~ (T — T).
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