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It is argued that in layered superconductors, vortices will be trapped by tilted colum-
nar defects even when external magnetic field is oriented along c-axis. For such tilted
trapped vortices, the interaction at long distance becomes attractive in some directions.
This must result in the formation of vortex chains with an intervortex distance of the
order of London penetration depth.

PACS: 74.60.Ge

The defects produced by ion irradiation are the columnar damage tracks with thickness
of the order of 2R ~ 50 — 100 A. These columnar defects (CD) affect dramatically the
vortex pinning and can increase the critical current many times [1,2]. The investigation
of the properties of superconductors with CD attracted much attention recently. Now in
high-T, superconducting oxides, it is possible to introduce the tilted columnar defects by
controlling the orientation of a heavy-ion beam (see for example [3] and references cited
their).

In the present paper, we consider theoretically the vortices in the layered supercon-
ductors with parallel CD slightly tilted in respect to c-axis while the external field is
being parallel to the c-axis. Taking in mind a very high degree of anisotropy of high-T,
superconductors (like Bi-2212 or T1-2201 for example) we may neglect Josephson inter-
action between layers and consider only electromagnetic one. The vortex line in strongly
anisotropic quasi-2d superconductor is in fact a chain of pancakes vortices [4,5]. For a
vortex line parallel to c-axis the situation is the same as in the standard case, and vortex
energy per unit length is given by the classic formula E, = (¢o/47A)? (In(A/€) + 0.12)[6],
where for a layered superconductor A~ = dy/Ajd , with d - the distance between super-
conducting layers, do — its thickness and A — an in-plane London penetration depth of
a single layer. When a vortex is on the CD (which direction coincides with c-axis) the
only difference in the vortex energy calculation is the cutoff at the CD radius R rather
than £ (see for example [7,8]), i.e. vortex energy being ECD = (¢o/47wA)* In(A/R) and
the pinning energy (per unit length) may be estimated as Epin = (¢o 2N In(A/€).

Namely this large pinning energy (comparable with the vortex energy itself) may
stabilize the orientation of vortex along tilted CD and not along the vertical magnetic
field. To find out at what angles 8 between CD axis 1 and c-axis a vortex prefers to be
oriented along CD, we need to calculate the energy of a tilted vortex in the framework
of electromagnetic coupling model. The general expression for the energy of an arbitrary

507



configuration of pancakes vortices has been derived in {4]:
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where Aeys = A2/dp, ®,(k) - is a Fourier transform of the total London vector of n-th
layer ®,(p) = 3., ®1(p — R, ,) and summation is performed over all pancakes o in the

n-th layer, ®1(k) = igo [k, z] /k?, the function Gy = ch(kd) + sh(kd)/2ssk.
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Let us choose x-axis in the plane defined by z(c-axis) and CD axis 1 — see Fig.1, then
the vector ®,(k) is ®,(k) = exp [—ind(k- X ) tan 6] # 1 (k). Performing summation in
the formula (1) over m, we obtain the energy of the vortex segment between two adjacent
layers:
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As the main contribution to the integral (2) comes from the region of small wavevectors
k < d~1, we may use the expansion of G}, for small k and finally obtain a very convenient
expression for the energy difference for tilted and perpendicular vortices:

_ d¢ 1 _ 1 _
E,0) - B0 = 35 | Gy ((1/,\2)(k2 [+ ERg0) T I+ kz) =
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Naturally the energy of the tilted vortex is larger than the perpendicular one, and it is only
the additional pinning energy (when vortex axis coincides with the CD axis) which could
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stabilize it. For the tilted CD, superconductivity is destroyed in the elliptic region on a-b
plane with semi-axis R and R/ cosé, and correspondingly the energy of a perpendicular
vortex with such an elliptic core is [8): E¢! = d (¢o/47))? In(2X cos 8/ R(1+cos 8)). Taking
this into account we see that the decrease of the energy due to a larger core surface
compensates its increase related with tilting, and finally the total energy of the vortex on
the tilted columnar defect is:

2
ECP(6) = d (%) in(2) ()

and does not depend on #. Comparing this with the energy of a perpendicular vortex
(which has no gain due to the pinning along the whole length of CD) we conclude that
a vortex will prefer to be always oriented along CD. In fact, for large values of 8, the
CD may not be elliptic in (a,b) plane, and the above mentioned compensation will dis-
appear. However in practice, for § < 60°, the vortices would penetrate along CD when
the magnetic field is parallel to the c-axis.

The condition that the single vortex penetrates into a sample is ECP — ¢oHd/4m = 0,
this gives us the first critical field

z A
H, = 4;’:"/\2 In (Tz) (5)

which is smaller than the critical field for a vortex oriented along the c-axis HY =
= (¢3/47A2) In(M/6).

The previous analysis is certainly applicable for the well separated vortices when
it is possible to neglect an intervortex interaction. This case corresponds to the field
close to H,; and a very small concentration of CD. On the other hand, the situation
when the interaction between tilted vortices comes into a play is very special and may
qualitatively change the process of vortex penetration. In fact, in the framework of an
anisotropic London model, an attraction between the tilted vortices appears in (c, 1)
plane [9-11]. Such attraction decreases exponentially at long distances and leads to the
formation of vortex chains [9], which has been observed subsequently on the experiment
(see for example [12] and references cited there). An anisotropic London model is not
appropriate for extremely quasi-2D compounds like Bi-2212, then the question of the
tilted vortex interaction must be treated in the framework of quasi-2D model with an
electromagnetic interaction.

With the help of a general expression (1) one may demonstrate that as in the case of
an anisotropic London model [9], the attraction between two tilted vortices is maximal in
(c, 1) plane, and at long distance the interaction energy varies as

Eint ~ —sin’(6)/D?,

where D is the distance between the vortex lines. Such a long range attraction is quite
different from an exponentially decreasing attraction in London model {9-11]. If the
sample contains many CD available for vortex occupation, then vortices will occupy CD
forming a chain in (¢, 1) plane. The first critical field will correspond to the appearance
of the vortex chain, not a single vortex.
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To calculate the characteristics of such vortex chain we may write with the help of
(1) — (3) the energy of vortex in chain as:

chainggn 4 [ dRy 1 1
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where a is the distance between the adjacent vortices in plane (xy) - see Fig.1.
To avoid all the complications related with a cut-off, it is convenient to calculate the
difference of the energy of the vortex in chain and a solitary one:

EZtin(9) — BSP(0) = X Az{ z f ke - [ FK Q)}, Y

where Q = k. , ¢ = ky and the function

1 1
K(q,Q) = (1 T 14 A2(Q2 + ¢2) + A2Q? ta,nza) (@ +¢*) ®

Performing summation and integration over @ in (7) we finally obtain
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where a= a/(2)) and for a >> A
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E;n:(0) = EChain(9) — ESP(6) = ‘4?22 tan? @ / [coth(u) — 1] udu, (10)
0

i.e. at long distance there is always an attraction between the vortices located on the
tilted CD.
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The interaction energy as a function of distance a is presented in Fig.2 for several
tilting angles @: at short distance, vortices repeal each other while at long distance, the
interaction becomes attractive, and the minimum of E;,; corresponds to the equilibrium
distance between the vortices in chain. This equilibrium distance Eeq as a function of
angle @ is presented in Fig.3, and we see that it is rather large a., ~ (3 — 8)A (note that
at angles  very close to 7/2 even the weak Josephson interlayer interaction is needed
to be taken into account, and our model is no longer valid). For typical concentration of
CD (fluence Bg ~ (1 — 3)T), the mean distance between them is much smaller than a., ,
and at low field vortices could freely choose CD to feel in, forming thus the vortex chains.

In the conclusion, we stress that in the presence of tilted CD, at low magnetic field
oriented along c-axis, vortices prefer to be trapped by CD provoking thus magnetization
perpendicular to the external field, i.e. torque. The first critical field will correspond to
the appearance of a vortex chain and not a single vortex. The vortex lattice at low field
will represent the well separating vortex chains, and the increase of field will decrease the
distance between chains leaving an inter-vortex distance in chain basically the same one
and equal t0 a.q. It might be interesting to perform magnetization and/or torque mea-
surements, as well as decoration experiments on the samples of high-T,, superconductors
with tilted CD.

The help of T.Chameeva and C.Meyers in preparation of the manuscript is appreciated.
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